Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Comparative genomic tools and databases: providing insights into the human genome
Len A. Pennacchio, Edward M. Rubin
Len A. Pennacchio, Edward M. Rubin
Published April 15, 2003
Citation Information: J Clin Invest. 2003;111(8):1099-1106. https://doi.org/10.1172/JCI17842.
View: Text | PDF
Spotlight

Comparative genomic tools and databases: providing insights into the human genome

  • Text
  • PDF
Abstract

Authors

Len A. Pennacchio, Edward M. Rubin

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Comparison of local- and global-alignment algorithm strategies. Top: Glo...
Comparison of local- and global-alignment algorithm strategies. Top: Global alignments are generated when two DNA sequences (A and B) are compared and an optimal similarity score is determined over the entire length of the two sequences. Bottom: Local alignments are produced when two DNA sequences (A and B) are compared and optimal similarity scores are determined over numerous subregions along the length of the two sequences. The local-alignment algorithm works by first finding very short common segments between the input sequences (A and B), and then expanding out the matching regions as far as possible.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts