Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mutant THAP11 causes cerebellar neurodegeneration and triggers TREM2-mediated microglial activation in mice
Eshu Ruan, … , Shihua Li, Su Yang
Eshu Ruan, … , Shihua Li, Su Yang
Published June 3, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI178349.
View: Text | PDF
Research In-Press Preview Genetics Neuroscience

Mutant THAP11 causes cerebellar neurodegeneration and triggers TREM2-mediated microglial activation in mice

  • Text
  • PDF
Abstract

Abnormal expansions of CAG trinucleotide repeat within specific gene exons give rise to polyglutamine (polyQ) diseases, a family of inherited disorders characterized by late-onset neurodegeneration. Recently, a new type of polyQ disease was identified and named spinocerebellar ataxia 51 (SCA51). SCA51 is caused by polyQ expansion in THAP11, an essential transcription factor for brain development. The pathogenesis of SCA51, particularly how mutant THAP11 with polyQ expansion contributes to neuropathology, remains elusive. Our study of mouse and monkey brains revealed that THAP11 expression is subject to developmental regulation, showing enrichment in the cerebellum. However, knocking down endogenous THAP11 in adult mice does not affect neuronal survival. In contrast, expressing mutant THAP11 with polyQ expansion leads to pronounced protein aggregation, cerebellar neurodegeneration, and motor deficits, indicating that gain-of-function mechanisms are central to SCA51 pathogenesis. We discovered activated microglia expressing TREM2 in the cerebellum of a newly developed SCA51 knock-in mouse model. Mechanistically, mutant THAP11 enhances the transcription of TREM2, leading to its upregulation. The loss of TREM2 or depletion of microglia mitigates neurodegeneration induced by mutant THAP11. Our study offers the first mechanistic insights into the pathogenesis of SCA51, highlighting the role of TREM2-mediated microglial activation in SCA51 neuropathology.

Authors

Eshu Ruan, Jingpan Lin, Zhao Chen, Qianai Sheng, Laiqiang Chen, Jiating He, Xuezhi Duan, Yiyang Qin, Tingting Xing, Sitong Yang, Mingtian Pan, Xiangyu Guo, Peng Yin, Xiao-Jiang Li, Hong Jiang, Shihua Li, Su Yang

×

Usage data is cumulative from June 2025 through June 2025.

Usage JCI PMC
Text version 390 0
PDF 149 0
Supplemental data 99 0
Citation downloads 63 0
Totals 701 0
Total Views 701

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts