Ku70, a DNA repair protein, binds to the damaged DNA ends and orchestrates the recruitment of other proteins to facilitate repair of DNA double-strand breaks. Besides its essential role in DNA repair, several studies have highlighted nonclassical functions of Ku70 in cellular processes. However, its function in immune homeostasis and antitumor immunity remains unknown. Here, we discovered a marked association between elevated Ku70 expression and unfavorable prognosis in lung adenocarcinoma, focusing specifically on increased Ku70 levels in tumor-infiltrated Tregs. Using a lung-colonizing tumor model in mice with Treg-specific Ku70 deficiency, we demonstrated that deletion of Ku70 in Tregs led to a stronger antitumor response and slower tumor growth due to impaired immune-suppressive capacity of Tregs. Furthermore, we confirmed that Ku70 played a critical role in sustaining the suppressive function of human Tregs. We found that Ku70 bound to forkhead box protein P3 (FOXP3) and occupied FOXP3-bound genomic sites to support its transcriptional activities. These findings not only unveil a nonhomologous end joining–independent (NHEJ-independent) role of Ku70 crucial for Treg-suppressive function, but also underscore the potential of targeting Ku70 as an effective strategy in cancer therapy, aiming to both restrain cancer cells and enhance pulmonary antitumor immunity.
Qianru Huang, Na Tian, Jianfeng Zhang, Shiyang Song, Hao Cheng, Xinnan Liu, Wenle Zhang, Youqiong Ye, Yanhua Du, Xueyu Dai, Rui Liang, Dan Li, Sheng-Ming Dai, Chuan Wang, Zhi Chen, Qianjun Zhou, Bin Li
Usage data is cumulative from October 2024 through July 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 4,424 | 330 |
867 | 70 | |
Figure | 706 | 5 |
Supplemental data | 498 | 48 |
Citation downloads | 78 | 0 |
Totals | 6,573 | 453 |
Total Views | 7,026 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.