The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an “always-on” mode, rather than the more canonical “on-demand” response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group’s initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.


Nicole Calakos, Zachary F. Caffall


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.