Antagonists — such as Ziconotide and Gabapentin — of the CaV2.2 (N-type) calcium channels are used clinically as analgesics for chronic pain. However, their use is limited by narrow therapeutic windows, difficult dosing routes (Ziconotide), misuse, and overdoses (Gabapentin), as well as a litany of adverse effects. Expansion of novel pain therapeutics may emerge from mechanism-based interrogation of CaV2.2. Here, we report the identification of C2230, an aryloxy-hydroxypropylamine, as a CaV2.2 blocker. C2230 trapped and stabilized inactivated CaV2.2 in a slow-recovering state and accelerated the open-state inactivation of the channel, conferring an advantageous use-dependent inhibition profile. C2230 inhibited CaV2.2 during high-frequency stimulation, while sparing other voltage-gated ion channels. C2230 inhibited CaV2.2 in dorsal root and trigeminal ganglia neurons from rats, marmosets, and humans in a G-protein-coupled-receptor–independent manner. Further, C2230 reduced evoked excitatory postsynaptic currents and excitatory neurotransmitter release in the spinal cord, leading to relief of neuropathic, orofacial, and osteoarthritic pain-like behaviors via 3 different routes of administration. C2230 also decreased fiber photometry-based calcium responses in the parabrachial nucleus, mitigated aversive behavioral responses to mechanical stimuli after neuropathic injury, and preserved protective pain responses, all without affecting motor or cardiovascular function. Finally, site-directed mutation analysis demonstrated that C2230 binds differently than other known CaV2.2 blockers, making it a promising lead compound for analgesic development.
Cheng Tang, Kimberly Gomez, Yan Chen, Heather N. Allen, Sara Hestehave, Erick J. Rodríguez-Palma, Santiago Loya-Lopez, Aida Calderon-Rivera, Paz Duran, Tyler S. Nelson, Siva Rama Raju Kanumuri, Bijal Shah, Nihar R. Panigrahi, Samantha Perez-Miller, Morgan K. Schackmuth, Shivani Ruparel, Amol Patwardhan, Theodore J. Price, Paramjit S. Arora, Ravindra K. Sharma, Abhisheak Sharma, Jie Yu, Olga A. Korczeniewska, Rajesh Khanna
Usage data is cumulative from December 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 5,463 | 195 |
1,154 | 57 | |
Figure | 698 | 7 |
Supplemental data | 360 | 23 |
Citation downloads | 93 | 0 |
Totals | 7,768 | 282 |
Total Views | 8,050 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.