Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR
Hongbing Zhang, Gregor Cicchetti, Hiroaki Onda, Henry B. Koon, Kirsten Asrican, Natalia Bajraszewski, Francisca Vazquez, Christopher L. Carpenter, David J. Kwiatkowski
Hongbing Zhang, Gregor Cicchetti, Hiroaki Onda, Henry B. Koon, Kirsten Asrican, Natalia Bajraszewski, Francisca Vazquez, Christopher L. Carpenter, David J. Kwiatkowski
View: Text | PDF
Article Oncology

Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR

  • Text
  • PDF
Abstract

Tuberous sclerosis (TSC) is a familial tumor syndrome due to mutations in TSC1 or TSC2, in which progression to malignancy is rare. Primary Tsc2–/– murine embryo fibroblast cultures display early senescence with overexpression of p21CIP1/WAF1 that is rescued by loss of TP53. Tsc2–/–TP53–/– cells, as well as tumors from Tsc2+/– mice, display an mTOR-activation signature with constitutive activation of S6K, which is reverted by treatment with rapamycin. Rapamycin also reverts a growth advantage of Tsc2–/–TP53–/– cells. Tsc1/Tsc2 does not bind directly to mTOR, however, nor does it directly influence mTOR kinase activity or cellular phosphatase activity. There is a marked reduction in Akt activation in Tsc2–/–TP53–/– and Tsc1–/– cells in response to serum and PDGF, along with a reduction in cell ruffling. PDGFRα and PDGFRβ expression is markedly reduced in both the cell lines and Tsc mouse renal cystadenomas, and ectopic expression of PDGFRβ in Tsc2-null cells restores Akt phosphorylation in response to serum, PDGF, EGF, and insulin. This activation of mTOR along with downregulation of PDGFR PI3K-Akt signaling in cells lacking Tsc1 or Tsc2 may explain why these genes are rarely involved in human cancer. This is in contrast to PTEN, which is a negative upstream regulator of this pathway.

Authors

Hongbing Zhang, Gregor Cicchetti, Hiroaki Onda, Henry B. Koon, Kirsten Asrican, Natalia Bajraszewski, Francisca Vazquez, Christopher L. Carpenter, David J. Kwiatkowski

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Effects of inhibitors on S6K/S6 phosphorylation and growth of TP53–/–Tsc...
Effects of inhibitors on S6K/S6 phosphorylation and growth of TP53–/–Tsc2–/– and control TP53–/– MEFs. (a) Immunoblot analysis of a serum-starved (2 days) then stimulated TP53–/–Tsc2+/+ cell line (top) and a serum-starved TP53–/–Tsc2–/– cell line (bottom). Cells were treated with 10 μM LY294002, 0.1 μM wortmannin, 10 nM rapamycin, 0.1 μM calyculin A, 5 μM TPCK, 10 μM U0126, or 20 μM PD98059 for 30 minutes. (b) Growth effects in two TP53–/–Tsc2–/– (open squares) and two TP53–/–Tsc2+/+ (filled triangles) cell lines of treatment with rapamycin. Each symbol reflects a consecutive day in culture. Rapamycin selectively reduces the growth of the TP53–/–Tsc2–/– cell lines in 0% serum. (c) Immunoblot analysis of effects of 1- and 2-butanol treatment on S6K/S6 phosphorylation in TP53–/–Tsc2–/– and control TP53–/– cell lines. 1- or 2-butanol (0.3%) were applied to the cell lines for 30 minutes, and the cells were serum stimulated for 5 minutes. (d) Immunoblot analysis of effects of AA deprivation and stimulation on S6K/S6 phosphorylation in two TP53–/–Tsc2–/– cell lines. All treatments were for 2 hours. Note that with either the EBSS or HBSS buffers, AAs are required to maintain pS6K and pS6 phosphorylation.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts