Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue
Susana Ortiz-Urda, Qun Lin, Cheryl L. Green, Douglas R. Keene, M. Peter Marinkovich, Paul A. Khavari
Susana Ortiz-Urda, Qun Lin, Cheryl L. Green, Douglas R. Keene, M. Peter Marinkovich, Paul A. Khavari
View: Text | PDF
Article Dermatology

Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue

  • Text
  • PDF
Abstract

Current therapeutic strategies for genetic skin disorders rely on the complex process of grafting genetically engineered tissue to recipient wound beds. Because fibroblasts synthesize and secrete extracellular matrix, we explored their utility in recessive dystrophic epidermolysis bullosa (RDEB), a blistering disease due to defective extracellular type VII collagen. Intradermal injection of RDEB fibroblasts overexpressing type VII collagen into intact RDEB skin stably restored correctly localized type VII collagen expression in vivo and normalized hallmark RDEB disease features, including subepidermal blistering and anchoring fibril defects.

Authors

Susana Ortiz-Urda, Qun Lin, Cheryl L. Green, Douglas R. Keene, M. Peter Marinkovich, Paul A. Khavari

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Restoration of anchoring fibrils after intradermal fibroblast injection....
Restoration of anchoring fibrils after intradermal fibroblast injection. BMZ ultrastructure of human skin tissue regenerated on CB.17 scid/scid mice. Note the absence of anchoring fibrils in RDEB skin injected with RDEB– fibroblasts (middle panel) and their restoration in RDEB skin injected with RDEB+ fibroblasts (right panel). Normal skin control (left panel) was produced using cells from normal subjects. Arrows denote representative anchoring fibrils. Scale bar: 500 nm. ld, lamina densa.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts