Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Genetic disruption of γ-melanocyte–stimulating hormone signaling leads to salt-sensitive hypertension in the mouse
Xi-Ping Ni, … , Roger D. Cone, Michael H. Humphreys
Xi-Ping Ni, … , Roger D. Cone, Michael H. Humphreys
Published April 15, 2003
Citation Information: J Clin Invest. 2003;111(8):1251-1258. https://doi.org/10.1172/JCI16993.
View: Text | PDF
Article Aging

Genetic disruption of γ-melanocyte–stimulating hormone signaling leads to salt-sensitive hypertension in the mouse

  • Text
  • PDF
Abstract

The γ-melanocyte-stimulating hormone (γ-MSH) is a natriuretic peptide derived from the N-terminal region of proopiomelanocortin (POMC). Evidence suggests that it may be part of the coordinated response to a low-sodium diet (LSD). We tested the effect of the HSD (8% NaCl) compared with LSD (0.07%) on mean arterial pressure (MAP) in mice with targeted disruption of the PC2 gene (PC2–/–), necessary for processing of POMC into γ-MSH, or the melanocortin receptor 3 gene (Mc3r–/–; the receptor for MSH). In wild-type mice, HSD for 1 week did not alter MAP versus LSD mice, but plasma γ-MSH immunoreactivity was more than double the LSD value. In contrast, in PC2–/– mice, MAP on the LSD was not greater than in wild-type mice, but plasma γ-MSH was reduced to one-seventh the wild-type value. On the HSD, MAP rose to a markedly hypertensive level while plasma γ-MSH concentration remained severely depressed. Intravenous infusion of γ-MSH (0.2 pmol/min) for 30 min to PC2–/– mice after 1 week of HSD lowered MAP from hypertensive levels to normal; infusion of α-MSH at the same rate had no effect. Injection of 60 fmol of γ-MSH into the lateral cerebral ventricle of hypertensive mice also lowered MAP to normal. Administration of a stable analogue of γ-MSH intra-abdominally by microosmotic pump to PC2–/– mice prevented the development of hypertension when ingesting the HSD. In mice with targeted disruption of the Mc3r gene, the HSD also led to marked hypertension accompanied by elevated plasma levels of γ-MSH; infusion of exogenous γ-MSH to these mice had no effect on MAP. These results strongly suggest that PC2-dependent processing of POMC into γ-MSH is necessary for the normal response to the HSD. γ-MSH deficiency results in marked salt-sensitive hypertension that is rapidly improved with exogenous γ-MSH through a central site of action. α-MSH infused at the same rate had no effect on MAP, indicating that the hypertension is a specific consequence of impaired POMC processing into γ-MSH. Absence of Mc3r produces γ-MSH resistance and hypertension on the HSD. These findings demonstrate a novel pathway mediating salt-sensitivity of blood pressure.

Authors

Xi-Ping Ni, David Pearce, Andrew A. Butler, Roger D. Cone, Michael H. Humphreys

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Representative gels showing PCR amplification products for targeted dele...
Representative gels showing PCR amplification products for targeted deletions of (a) PC2, (b) Mc3r, and (c) Mc4r genes as described in Methods. +/+, wild type; +/–, heterozygous; –/–, homozygous knockout. Left column is size ladder; 500 indicates 500 bp.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts