Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling.
R D Rudic, … , S S Segal, W C Sessa
R D Rudic, … , S S Segal, W C Sessa
Published February 15, 1998
Citation Information: J Clin Invest. 1998;101(4):731-736. https://doi.org/10.1172/JCI1699.
View: Text | PDF
Research Article

Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling.

  • Text
  • PDF
Abstract

The vascular endothelium mediates the ability of blood vessels to alter their architecture in response to hemodynamic changes; however, the specific endothelial-derived factors that are responsible for vascular remodeling are poorly understood. Here we show that endothelial-derived nitric oxide (NO) is a major endothelial-derived mediator controlling vascular remodeling. In response to external carotid artery ligation, mice with targeted disruption of the endothelial nitric oxide synthase gene (eNOS) did not remodel their ipsilateral common carotid arteries whereas wild-type mice did. Rather, the eNOS mutant mice displayed a paradoxical increase in wall thickness accompanied by a hyperplastic response of the arterial wall. These findings demonstrate a critical role for endogenous NO as a negative regulator of vascular smooth muscle proliferation in response to a remodeling stimulus. Furthermore, our data suggests that a primary defect in the NOS/NO pathway can promote abnormal remodeling and may facilitate pathological changes in vessel wall morphology associated with complex diseases such as hypertension and atherosclerosis.

Authors

R D Rudic, E G Shesely, N Maeda, O Smithies, S S Segal, W C Sessa

×

Usage data is cumulative from February 2022 through February 2023.

Usage JCI PMC
Text version 669 116
PDF 109 40
Citation downloads 36 0
Totals 814 156
Total Views 970
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts