Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Renal proximal tubule cells: power and finesse
Michaela A.A. Fuchs, Myles Wolf
Michaela A.A. Fuchs, Myles Wolf
Published May 1, 2023
Citation Information: J Clin Invest. 2023;133(9):e169607. https://doi.org/10.1172/JCI169607.
View: Text | PDF
Commentary

Renal proximal tubule cells: power and finesse

  • Text
  • PDF
Abstract

The proximal tubule is the high-capacity reabsorptive powerhouse of the kidney. Two papers in recent issues of the JCI highlight mechanisms of more delicate effects of the proximal tubule. Yoon et al. demonstrated the intracellular mechanism by which parathyroid hormone (PTH) increases production of 1,25-vitamin D. Activation of PTH receptor 1/cAMP/PKA signaling inhibited salt-inducible kinase 2 (SIK2) and SIK3, which increased CYB27B1 transcription and 1,25-vitamin D production. Replication of these effects with small-molecule SIK inhibitors suggests possible therapeutic applications for patients with disorders characterized by 1,25-vitamin D deficiency. Zhou et al. discovered that proximal tubule glycolysis acts as a phosphate sensor that regulates fibroblast growth factor 23 production in bone. They described several kidney-specific metabolic modifications that enabled glycolysis to be deployed as a phosphate sensor. The provocative results raise intriguing questions with implications for patients with disorders of phosphate homeostasis, including chronic kidney disease.

Authors

Michaela A.A. Fuchs, Myles Wolf

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 1,674 448
PDF 186 80
Figure 170 1
Citation downloads 75 0
Totals 2,105 529
Total Views 2,634

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts