Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles
Peter Ruzanov, Valentina Evdokimova, Manideep C. Pachva, Alon Minkovich, Zhenbo Zhang, Sofya Langman, Hendrik Gassmann, Uwe Thiel, Marija Orlic-Milacic, Syed H. Zaidi, Vanya Peltekova, Lawrence E. Heisler, Manju Sharma, Michael E. Cox, Trevor D. McKee, Mark Zaidi, Eve Lapouble, John D. McPherson, Olivier Delattre, Laszlo Radvanyi, Stefan E.G. Burdach, Lincoln D. Stein, Poul H. Sorensen
Peter Ruzanov, Valentina Evdokimova, Manideep C. Pachva, Alon Minkovich, Zhenbo Zhang, Sofya Langman, Hendrik Gassmann, Uwe Thiel, Marija Orlic-Milacic, Syed H. Zaidi, Vanya Peltekova, Lawrence E. Heisler, Manju Sharma, Michael E. Cox, Trevor D. McKee, Mark Zaidi, Eve Lapouble, John D. McPherson, Olivier Delattre, Laszlo Radvanyi, Stefan E.G. Burdach, Lincoln D. Stein, Poul H. Sorensen
View: Text | PDF
Research Article Inflammation

Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles

  • Text
  • PDF
Abstract

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.

Authors

Peter Ruzanov, Valentina Evdokimova, Manideep C. Pachva, Alon Minkovich, Zhenbo Zhang, Sofya Langman, Hendrik Gassmann, Uwe Thiel, Marija Orlic-Milacic, Syed H. Zaidi, Vanya Peltekova, Lawrence E. Heisler, Manju Sharma, Michael E. Cox, Trevor D. McKee, Mark Zaidi, Eve Lapouble, John D. McPherson, Olivier Delattre, Laszlo Radvanyi, Stefan E.G. Burdach, Lincoln D. Stein, Poul H. Sorensen

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,662 268
PDF 222 54
Figure 603 0
Supplemental data 285 27
Citation downloads 128 0
Totals 2,900 349
Total Views 3,249

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts