Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation
Zhi Yang, … , Danish Sayed, Maha Abdellatif
Zhi Yang, … , Danish Sayed, Maha Abdellatif
Published September 5, 2023
Citation Information: J Clin Invest. 2023;133(22):e169399. https://doi.org/10.1172/JCI169399.
View: Text | PDF
Research Article Cardiology Metabolism

Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation

  • Text
  • PDF
Abstract

Identification of branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of the propionyl-CoA that is utilized for histone propionylation and, thereby, regulate gene expression. To investigate the effects of BCAAs on the development of cardiac hypertrophy and failure, we applied pressure overload on the heart in mice maintained on a diet with standard levels of BCAAs (BCAA control) versus a BCAA-free diet. The former was associated with an increase in histone H3K23-propionyl (H3K23Pr) at the promoters of upregulated genes (e.g., cell signaling and extracellular matrix genes) and a decrease at the promoters of downregulated genes (e.g., electron transfer complex [ETC I–V] and metabolic genes). Intriguingly, the BCAA-free diet tempered the increases in promoter H3K23Pr, thus reducing collagen gene expression and fibrosis during cardiac hypertrophy. Conversely, the BCAA-free diet inhibited the reductions in promoter H3K23Pr and abolished the downregulation of ETC I–V subunits, enhanced mitochondrial respiration, and curbed the progression of cardiac hypertrophy. Thus, lowering the intake of BCAAs reduced pressure overload–induced changes in histone propionylation–dependent gene expression in the heart, which retarded the development of cardiomyopathy.

Authors

Zhi Yang, Minzhen He, Julianne Austin, Danish Sayed, Maha Abdellatif

×

Figure 7

BCAAs differentially regulate protein expression in the hypertrophied heart.

Options: View larger image (or click on image) Download as PowerPoint
BCAAs differentially regulate protein expression in the hypertrophied he...
Mice were treated as described in Figure 2. (A) Protein from the hearts was extracted and fractionated into cytoplasm (cyto), membrane (mem) (which contains mitochondria), nucleoplasm (nuc), chromatin (chrom), and cytoskeletal (CytoSk) fractions. M, standard markers. The fractions were analyzed by WB with the antibodies against the proteins listed on the left of each panel (n = 3, each). Note, COL1A1 is assembled in the endoplasmic/sarcoplasmic reticulum, which is in continuum with the nuclear membrane, which is why it is detected in the nuclear fraction. (B and C) Western blot signals for COL1A1 and MYH7 were quantitated, and the results were graphed as the average relative values, after adjusting one of the sham data points to 1. The results were analyzed by 1-way ANOVA, and the P values of those that were 0.05 or less are shown above the brackets encompassing the bars.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts