Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation
Roberta Faccio, … , F. Patrick Ross, Steven L. Teitelbaum
Roberta Faccio, … , F. Patrick Ross, Steven L. Teitelbaum
Published March 1, 2003
Citation Information: J Clin Invest. 2003;111(5):749-758. https://doi.org/10.1172/JCI16924.
View: Text | PDF
Article Bone biology

c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation

  • Text
  • PDF
Abstract

β3 integrin–null osteoclasts are dysfunctional, but their numbers are increased in vivo. In vitro, however, the number of β3–/– osteoclasts is reduced because of arrested differentiation. This paradox suggests cytokine regulation of β3–/– osteoclastogenesis differs in vitro and in vivo. In vitro, additional MCSF, but not receptor activator of NF-κB ligand (RANKL), completely rescues β3–/– osteoclastogenesis. Similarly, activation of extracellular signal-regulated kinases (ERKs) and expression of c-Fos, both essential for osteoclastogenesis, are attenuated in β3–/– preosteoclasts, but completely restored by additional MCSF. In fact, circulating and bone marrow cell membrane-bound MCSFs are enhanced in β3–/– mice, correlating with the increase in the osteoclast number. To identify components of the MCSF receptor that is critical for osteoclastogenesis in β3–/– cells, we retrovirally transduced authentic osteoclast precursors with chimeric c-Fms constructs containing various cytoplasmic domain mutations. Normalization of osteoclastogenesis and ERK activation, in β3–/– cells, uniquely requires c-Fms tyrosine 697. Finally, like high-dose MCSF, overexpression of c-Fos normalizes the number of β3–/– osteoclasts in vitro, but not their ability to resorb dentin. Thus, while c-Fms and αvβ3 collaborate in the osteoclastogenic process via shared activation of the ERK/c-Fos signaling pathway, the integrin is essential for matrix degradation.

Authors

Roberta Faccio, Sunao Takeshita, Alberta Zallone, F. Patrick Ross, Steven L. Teitelbaum

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 922 69
PDF 107 14
Figure 777 8
Citation downloads 114 0
Totals 1,920 91
Total Views 2,011
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts