Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1692

Lack of cell surface Fas/APO-1 expression in pulmonary adenocarcinomas.

Y Nambu, S J Hughes, A Rehemtulla, D Hamstra, M B Orringer, and D G Beer

Department of Internal Medicine, Division of Respiratory Diseases, Kanazawa Medical University, Ishikawa, Japan.

Find articles by Nambu, Y. in: PubMed | Google Scholar

Department of Internal Medicine, Division of Respiratory Diseases, Kanazawa Medical University, Ishikawa, Japan.

Find articles by Hughes, S. in: PubMed | Google Scholar

Department of Internal Medicine, Division of Respiratory Diseases, Kanazawa Medical University, Ishikawa, Japan.

Find articles by Rehemtulla, A. in: PubMed | Google Scholar

Department of Internal Medicine, Division of Respiratory Diseases, Kanazawa Medical University, Ishikawa, Japan.

Find articles by Hamstra, D. in: PubMed | Google Scholar

Department of Internal Medicine, Division of Respiratory Diseases, Kanazawa Medical University, Ishikawa, Japan.

Find articles by Orringer, M. in: PubMed | Google Scholar

Department of Internal Medicine, Division of Respiratory Diseases, Kanazawa Medical University, Ishikawa, Japan.

Find articles by Beer, D. in: PubMed | Google Scholar

Published March 1, 1998 - More info

Published in Volume 101, Issue 5 on March 1, 1998
J Clin Invest. 1998;101(5):1102–1110. https://doi.org/10.1172/JCI1692.
© 1998 The American Society for Clinical Investigation
Published March 1, 1998 - Version history
View PDF
Abstract

The Fas receptor and ligand initiate an apoptotic pathway. Alterations in this pathway within tumor cells can result in escape from apoptosis and immune surveillance. We evaluated Fas protein expression in 42 primary pulmonary adenocarcinomas, and Fas expression and function in the lung adenocarcinoma cell lines A549 and A427. Immunohistochemical analysis demonstrated Fas protein expression in 47.6% of the tumors; however, Fas-positive tumors demonstrated cytoplasmic staining without cell surface expression. Northern blot analysis indicated that levels of Fas mRNA were similar in Fas protein-positive tumors to levels in normal lung tissue, but were reduced in Fas protein-negative tumors. Soluble form Fas was not detected in the majority of these tumors either by RT-PCR or Western blot analysis. Cell surface Fas protein expression was minimal in A549 and A427 cell lines as determined by flow cytometry. Both cell lines demonstrated Fas mRNA expression by Northern blot analysis and abundant protein expression by Western blot analysis. Transfection of the Fas cDNA derived from A549 cells induced surface Fas protein in COS cells; however, stable transfection of a native Fas cDNA into A549 cells failed to induce surface Fas protein expression. Parental A549 cells and A549 cells transfected with a Fas expression vector were resistant to Fas-mediated apoptosis. Transgenic expression of a FLAG-tagged Fas cDNA in A549 cells, with visualization of the Fas-FLAG protein using confocal microscopy, demonstrated that the Fas-FLAG protein was retained within cytoplasmic portions of the cell and was not translocated to the cell surface. These findings suggest that the Fas protein is reduced or not present on the cell surface in the primary lung tumors and is sequestered within A549 tumorigenic lung cells, and these alterations directly affect the cells resistance to Fas-mediated apoptosis.

Version history
  • Version 1 (March 1, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts