Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Genetic modification of inflammation- and clonal hematopoiesis–associated cardiovascular risk
Zhi Yu, … , Alan R. Tall, Pradeep Natarajan
Zhi Yu, … , Alan R. Tall, Pradeep Natarajan
Published July 27, 2023
Citation Information: J Clin Invest. 2023;133(18):e168597. https://doi.org/10.1172/JCI168597.
View: Text | PDF
Research Article Cardiology Genetics

Genetic modification of inflammation- and clonal hematopoiesis–associated cardiovascular risk

  • Text
  • PDF
Abstract

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with an increased risk of cardiovascular diseases (CVDs), putatively via inflammasome activation. We pursued an inflammatory gene modifier scan for CHIP-associated CVD risk among 424,651 UK Biobank participants. We identified CHIP using whole-exome sequencing data of blood DNA and modeled as a composite, considering all driver genes together, as well as separately for common drivers (DNMT3A, TET2, ASXL1, and JAK2). We developed predicted gene expression scores for 26 inflammasome-related genes and assessed how they modify CHIP-associated CVD risk. We identified IL1RAP as a potential key molecule for CHIP-associated CVD risk across genes and increased AIM2 gene expression leading to heightened JAK2- and ASXL1-associated CVD risk. We show that CRISPR-induced Asxl1-mutated murine macrophages had a particularly heightened inflammatory response to AIM2 agonism, associated with an increased DNA damage response, as well as increased IL-10 secretion, mirroring a CVD-protective effect of IL10 expression in ASXL1 CHIP. Our study supports the role of inflammasomes in CHIP-associated CVD and provides evidence to support gene-specific strategies to address CHIP-associated CVD risk.

Authors

Zhi Yu, Trevor P. Fidler, Yunfeng Ruan, Caitlyn Vlasschaert, Tetsushi Nakao, Md Mesbah Uddin, Taralynn Mack, Abhishek Niroula, J. Brett Heimlich, Seyedeh M. Zekavat, Christopher J. Gibson, Gabriel K. Griffin, Yuxuan Wang, Gina M. Peloso, Nancy Heard-Costa, Daniel Levy, Ramachandran S. Vasan, François Aguet, Kristin G. Ardlie, Kent D. Taylor, Stephen S. Rich, Jerome I. Rotter, Peter Libby, Siddhartha Jaiswal, Benjamin L. Ebert, Alexander G. Bick, Alan R. Tall, Pradeep Natarajan

×

Figure 1

Study schematics.

Options: View larger image (or click on image) Download as PowerPoint
Study schematics.
CHIP was identified using whole-exome sequencing data ...
CHIP was identified using whole-exome sequencing data of blood DNA. Predicted expression scores for inflammatory genes were developed based on cis-eQTL results and validated using measured RNA-Seq data; we then examined whether they modified CHIP-associated CVD risk. Predicted expression scores that significantly modified CHIP-associated CVD risk were further validated in a mouse model and evaluated for their associations with hematopoietic and cardiometabolic traits.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts