Immune cells play an important functional role in bone fracture healing. Fracture repair is a well-choreographed process that takes approximately 21 days in healthy mice. While the process is complex, conceptually it can be divided into four overlapping stages: inflammation, cartilaginous callus formation, bony callus formation, and remodeling. T cells play a key role in both the cartilaginous and bony callus phases by producing IL-17A. In this issue of the JCI, Dar et al. showed that T cells were recruited from the gut, where the gut microbiota determined the pool of T cells that expressed IL-17A. Treatment with antibiotics and dysbiosis reduced the expansion of IL-17–expressing CD4+ T cells (Th17) and impaired callus formation. These findings demonstrate crosstalk among the gut microbiota, the adaptive immune system, and bone that has clinical implications for fracture healing.
Rajeev Aurora, Matthew J. Silva
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,103 | 379 |
131 | 67 | |
Figure | 75 | 2 |
Citation downloads | 88 | 0 |
Totals | 1,397 | 448 |
Total Views | 1,845 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.