Accumulating evidence favors a role for proinsulin as a key autoantigen in diabetes. In the mouse, two proinsulin isoforms coexist. Most studies point to proinsulin 2 as the major isoform recognized by T cells in the NOD mouse. We studied mice in which a null proinsulin 2 mutation was transferred from proinsulin 2–deficient 129 mice onto the NOD background along with 16 genetic markers (including I-Ag7 MHC molecule) associated with diabetes. Intercross mice from the fourth backcross generation showed that proinsulin 2–/– mice develop accelerated insulitis and diabetes. The high prevalence of anti-insulin autoantibodies in proinsulin 2–/– mice indicates that diabetes acceleration relates to altered recognition of proinsulin. The prevalence of anti–glutamic acid decarboxylase autoantibodies and of sialitis is not increased in proinsulin 2–/– mice. We give evidence that proinsulin 2 expression leads to silencing of T cells specific for an epitope shared by proinsulin 1 and proinsulin 2. In the human, alleles located in the VNTR region flanking the insulin gene control β cell response to glucose and proinsulin expression in the thymus and are key determinants of diabetes susceptibility. Proinsulin 2–/– NOD mice provide a model to study the role of thymic expression of insulin in susceptibility to diabetes.
Karine Thébault-Baumont, Danielle Dubois-Laforgue, Patricia Krief, Jean-Paul Briand, Philippe Halbout, Karine Vallon-Geoffroy, Joëlle Morin, Véronique Laloux, Agnès Lehuen, Jean-Claude Carel, Jacques Jami, Sylviane Muller, Christian Boitard
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 908 | 68 |
77 | 18 | |
Figure | 267 | 10 |
Table | 38 | 0 |
Citation downloads | 63 | 0 |
Totals | 1,353 | 96 |
Total Views | 1,449 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.