Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Acceleration of type 1 diabetes mellitus in proinsulin 2–deficient NOD mice
Karine Thébault-Baumont, … , Sylviane Muller, Christian Boitard
Karine Thébault-Baumont, … , Sylviane Muller, Christian Boitard
Published March 15, 2003
Citation Information: J Clin Invest. 2003;111(6):851-857. https://doi.org/10.1172/JCI16584.
View: Text | PDF
Article Aging

Acceleration of type 1 diabetes mellitus in proinsulin 2–deficient NOD mice

  • Text
  • PDF
Abstract

Accumulating evidence favors a role for proinsulin as a key autoantigen in diabetes. In the mouse, two proinsulin isoforms coexist. Most studies point to proinsulin 2 as the major isoform recognized by T cells in the NOD mouse. We studied mice in which a null proinsulin 2 mutation was transferred from proinsulin 2–deficient 129 mice onto the NOD background along with 16 genetic markers (including I-Ag7 MHC molecule) associated with diabetes. Intercross mice from the fourth backcross generation showed that proinsulin 2–/– mice develop accelerated insulitis and diabetes. The high prevalence of anti-insulin autoantibodies in proinsulin 2–/– mice indicates that diabetes acceleration relates to altered recognition of proinsulin. The prevalence of anti–glutamic acid decarboxylase autoantibodies and of sialitis is not increased in proinsulin 2–/– mice. We give evidence that proinsulin 2 expression leads to silencing of T cells specific for an epitope shared by proinsulin 1 and proinsulin 2. In the human, alleles located in the VNTR region flanking the insulin gene control β cell response to glucose and proinsulin expression in the thymus and are key determinants of diabetes susceptibility. Proinsulin 2–/– NOD mice provide a model to study the role of thymic expression of insulin in susceptibility to diabetes.

Authors

Karine Thébault-Baumont, Danielle Dubois-Laforgue, Patricia Krief, Jean-Paul Briand, Philippe Halbout, Karine Vallon-Geoffroy, Joëlle Morin, Véronique Laloux, Agnès Lehuen, Jean-Claude Carel, Jacques Jami, Sylviane Muller, Christian Boitard

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Transfer of spleen cells from 8-week-old proinsulin 2–deficient and cont...
Transfer of spleen cells from 8-week-old proinsulin 2–deficient and control NOD mice in NOD-scid recipients. Spleen cells were pooled from five donors in each group. Diabetogenic spleen cells were used as positive control. Five recipient mice were used in each group. F, female NOD donors; M, male NOD donors.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts