Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Increased islet apoptosis in Pdx1+/– mice
James D. Johnson, … , Helena Edlund, Kenneth S. Polonsky
James D. Johnson, … , Helena Edlund, Kenneth S. Polonsky
Published April 15, 2003
Citation Information: J Clin Invest. 2003;111(8):1147-1160. https://doi.org/10.1172/JCI16537.
View: Text | PDF
Article Metabolism

Increased islet apoptosis in Pdx1+/– mice

  • Text
  • PDF
Abstract

Mice with 50% Pdx1, a homeobox gene critical for pancreatic development, had worsening glucose tolerance with age and reduced insulin release in response to glucose, KCl, and arginine from the perfused pancreas. Surprisingly, insulin secretion in perifusion or static incubation experiments in response to glucose and other secretagogues was similar in islets isolated from Pdx1+/– mice compared with Pdx1+/+ littermate controls. Glucose sensing and islet Ca2+ responses were also normal. Depolarization-evoked exocytosis and Ca2+ currents in single Pdx1+/– cells were not different from controls, arguing against a ubiquitous β cell stimulus-secretion coupling defect. However, isolated Pdx1+/– islets and dispersed β cells were significantly more susceptible to apoptosis at basal glucose concentrations than Pdx1+/+ islets. BclXL and Bcl-2 expression were reduced in Pdx1+/– islets. In vivo, increased apoptosis was associated with abnormal islet architecture, positive TUNEL, active caspase-3, and lymphocyte infiltration. Although similar in young mice, both β cell mass and islet number failed to increase with age and were approximately 50% less than controls by one year. These results suggest that an increase in apoptosis, with abnormal regulation of islet number and β cell mass, represents a key mechanism whereby partial PDX1 deficiency leads to an organ-level defect in insulin secretion and diabetes.

Authors

James D. Johnson, Noreen T. Ahmed, Dan S. Luciani, Zhiqiang Han, Hung Tran, Jun Fujita, Stanley Misler, Helena Edlund, Kenneth S. Polonsky

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Pdx1+/– islets and cells are prone to apoptosis when cultured in low glu...
Pdx1+/– islets and cells are prone to apoptosis when cultured in low glucose concentrations. (a) Apoptosis, measured by PCR-enhanced DNA laddering, was compared in groups of five islets cultured in RPMI with 5 mM, 10 mM, and 25 mM glucose for 72 hours (n = 10 for each genotype). Islets cultured in 10 μM thapsigargin (Tg), a known inducer of islet apoptosis, were used as a positive control. Apoptotic calf-thymus DNA served as an additional reference control, independent of our cultures. DNA-ladder bands were quantified by densitometry and pooled as described in Methods. (b) A representative gel is shown. (c) The average percentage of apoptotic cells measured in dispersed islet cells cultured overnight in 5 mM glucose, measured by cell uptake of a specific dye (Methods). Cells were counted manually in phenol red–free RPMI. Shown are pooled results from three coverslips of islets dispersed from three mice of each genotype. Asterisks denote significant differences.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts