Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells
Jeffrey J. Molldrem, … , Changqing Wang, Mark M. Davis
Jeffrey J. Molldrem, … , Changqing Wang, Mark M. Davis
Published March 1, 2003
Citation Information: J Clin Invest. 2003;111(5):639-647. https://doi.org/10.1172/JCI16398.
View: Text | PDF
Article Immunology

Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells

  • Text
  • PDF
Abstract

We have shown that cytotoxic T lymphocytes specific for PR1, an HLA-A2–restricted nonopeptide derived from proteinase 3, kill leukemia cells and may contribute to the elimination of chronic myelogenous leukemia (CML) after treatment with IFN or allogeneic bone marrow transplant. Some patients with persistent disease also have circulating PR1-specific T cells, however, suggesting the likelihood of immune tolerance. Here we show that both high- and low-avidity PR1-specific T cells from the peripheral blood of healthy donors can be identified and selectively expanded in vitro. Although high-avidity PR1-specific T cells killed CML more effectively than low-avidity T cells, only high-avidity T cells underwent apoptosis when stimulated with high PR1 peptide concentration or when exposed to leukemia that overexpressed proteinase 3. No high-avidity PR1-specific T cells could be identified or expanded from newly diagnosed leukemia patients, whereas low-avidity T cells were readily expanded. Circulating high-avidity PR1-specific T cells were identified in IFN-sensitive patients in cytogenetic remission, however. These results provide evidence that CML shapes the host immune response and that leukemia outgrowth may result in part from leukemia-induced selective deletion of high-avidity PR1-specific T cells.

Authors

Jeffrey J. Molldrem, Peter P. Lee, Shreya Kant, Eric Wieder, Weidong Jiang, Sijie Lu, Changqing Wang, Mark M. Davis

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Only low-avidity PR1-specific CTLs are elicited from peripheral blood of...
Only low-avidity PR1-specific CTLs are elicited from peripheral blood of CML patients. PBMCs from three different HLA-A2+ CML patients were stimulated weekly with PR1-pulsed T2 cells with PR1 ranging from 0.002 μM to 200 μM. After 4 weeks, resultant cultures were stained with CD8 Ab and PR1/HLA-A2 tetramer and analyzed by FACS. The percentage of CD8+ cells that stain with relevant tetramer is indicated within each FACS plot. (a) Cultures elicited with 0.2 μM, 0.02 μM, and 0.002 μM PR1 resulted in CTLs with lower-intensity tetramer staining than CTLs from healthy donors elicited with similar doses of PR1. (b) PBMCs from an untreated chronic phase CML patient (CML no. 4) were studied weekly prior to restimulation with PR1-pulsed T2 cells with PR1/HLA-A2 tetramer. Only PR1-specific CTLs with low-intensity tetramer staining emerge over the 4 weeks, and no relatively high tetramer intensity CTLs are present. (c) PBMCs from CML no. 2 stimulated weekly with 0.2 μM pp65 peptide elicited CTLs with high-intensity pp65/HLA-A2 tetramer staining after 4 weeks in culture.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts