Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pacemaker channel dysfunction in a patient with sinus node disease
Eric Schulze-Bahr, … , Olaf Pongs, Dirk Isbrandt
Eric Schulze-Bahr, … , Olaf Pongs, Dirk Isbrandt
Published May 15, 2003
Citation Information: J Clin Invest. 2003;111(10):1537-1545. https://doi.org/10.1172/JCI16387.
View: Text | PDF
Article Cardiology

Pacemaker channel dysfunction in a patient with sinus node disease

  • Text
  • PDF
Abstract

The cardiac pacemaker current If is a major determinant of diastolic depolarization in sinus nodal cells and has a key role in heartbeat generation. Therefore, we hypothesized that some forms of “idiopathic” sinus node dysfunction (SND) are related to inherited dysfunctions of cardiac pacemaker ion channels. In a candidate gene approach, a heterozygous 1-bp deletion (1631delC) in exon 5 of the human HCN4 gene was detected in a patient with idiopathic SND. The mutant HCN4 protein (HCN4-573X) had a truncated C-terminus and lacked the cyclic nucleotide–binding domain. COS-7 cells transiently transfected with HCN4-573X cDNA indicated normal intracellular trafficking and membrane integration of HCN4-573X subunits. Patch-clamp experiments showed that HCN4-573X channels mediated If-like currents that were insensitive to increased cellular cAMP levels. Coexpression experiments showed a dominant-negative effect of HCN4-573X subunits on wild-type subunits. These data indicate that the cardiac If channels are functionally expressed but with altered biophysical properties. Taken together, the clinical, genetic, and in vitro data provide a likely explanation for the patient’s sinus bradycardia and the chronotropic incompetence.

Authors

Eric Schulze-Bahr, Axel Neu, Patrick Friederich, U. Benjamin Kaupp, Günter Breithardt, Olaf Pongs, Dirk Isbrandt

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
Functional characterization of coexpressed HCN4 and HCN4-573X subunits i...
Functional characterization of coexpressed HCN4 and HCN4-573X subunits in COS-7 cells. (a) Schematic representation of the expression construct used for coexpression experiments (not drawn to scale). Wild-type and mutant HCN4 cDNAs are located on the same plasmid (indicated with dotted lines); initiation codons of open reading frames are indicated with horizontal arrows. Structural elements such as promoters (PCMV, PEF-1α), IRES, and polyadenylation signals are shown in open boxes. The PCR products amplified from reverse-transcribed total RNA are indicated by a horizontal line above the HCN4 open reading frames. The location of the EciI restriction site is indicated by a vertical arrow. pA, polyadenylation signal. (b) Agarose gel electrophoresis of EciI-digested RT-PCR products amplified from total RNA of transiently transfected COS-7 cells. The wild-type fragment has a size of 353 bp and contains no EciI restriction site. In contrast, the 352-bp-long mutant PCR fragment (573X) is digested by EciI (see Figure 2c). The resulting two fragments (160 bp and 192 bp) are not separated under the chosen conditions. Shown are representative current traces of coexpressed wild-type and HCN4-573X subunits elicited by hyperpolarizing voltage steps from –40 mV to –120 mV in the absence (c) or presence (d) of 8-Br-cAMP. Voltage dependences of heteromeric wild-type/hHCN4-573X (e) conductances in the absence (black circles) or presence (white circles) of 1 mM 8-Br-cAMP are shown. The dashed lines indicate the respective Boltzmann fits of HCN4 (WT) with or without application of 8-Br-cAMP taken from Figure 4. Absence of error bars indicates errors smaller than the symbol size.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts