Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Targeting fatty acid metabolism in glioblastoma
Jason Miska, Navdeep S. Chandel
Jason Miska, Navdeep S. Chandel
Published January 3, 2023
Citation Information: J Clin Invest. 2023;133(1):e163448. https://doi.org/10.1172/JCI163448.
View: Text | PDF
Review Series

Targeting fatty acid metabolism in glioblastoma

  • Text
  • PDF
Abstract

Glioblastoma (GBM) is a primary tumor of the brain defined by its uniform lethality and resistance to conventional therapies. There have been considerable efforts to untangle the metabolic underpinnings of this disease to find novel therapeutic avenues for treatment. An emerging focus in this field is fatty acid (FA) metabolism, which is critical for numerous diverse biological processes involved in GBM pathogenesis. These processes can be classified into four broad fates: anabolism, catabolism, regulation of ferroptosis, and the generation of signaling molecules. Each fate provides a unique perspective by which we can inspect GBM biology and gives us a road map to understanding this complicated field. This Review discusses the basic, translational, and clinical insights into each of these fates to provide a contemporary understanding of FA biology in GBM. It is clear, based on the literature, that there are far more questions than answers in the field of FA metabolism in GBM, and substantial efforts should be made to untangle these complex processes in this intractable disease.

Authors

Jason Miska, Navdeep S. Chandel

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 3,630 1,380
PDF 658 190
Figure 678 5
Table 106 0
Citation downloads 138 0
Totals 5,210 1,575
Total Views 6,785

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts