Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

R-spondin 3 governs secretory differentiation in the gastric oxyntic glands
Ken Kurokawa, … , Timothy C. Wang, Yoku Hayakawa
Ken Kurokawa, … , Timothy C. Wang, Yoku Hayakawa
Published November 1, 2022
Citation Information: J Clin Invest. 2022;132(21):e163380. https://doi.org/10.1172/JCI163380.
View: Text | PDF
Commentary

R-spondin 3 governs secretory differentiation in the gastric oxyntic glands

  • Text
  • PDF
Abstract

The gastric oxyntic glands are maintained by gastric stem cells that continuously supply all differentiated cell types within the corpus epithelium. Stem cells are supported by stromal cells that make up the stem cell niche. In this issue of the JCI, Fischer et al. report on their use of genetically engineered mouse models and organoids to study the role of R-spondin 3 (RSPO3) in the stomach. RSPO3, one of the major stem cell niche factors, primarily promoted secretory differentiation in the normal stomach, but also contributed to regeneration following injury. Mechanistically, RSPO3 was upregulated in the stroma by loss of chief cells and then activated the YAP pathway in gastric stem and progenitor cells, which appeared to be critical for regeneration of the secretory lineage. These data substantially advance our understanding of the regulation of gastric stem cells and highlight a function for RSPO3 in the gastrointestinal tract, which is as the gatekeeper of secretory differentiation.

Authors

Ken Kurokawa, Timothy C. Wang, Yoku Hayakawa

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 573 89
PDF 91 27
Figure 140 0
Citation downloads 91 0
Totals 895 116
Total Views 1,011

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts