Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Targeting hypoxia-inducible factors with 32-134D safely and effectively treats diabetic eye disease in mice
Jing Zhang, Deepti Sharma, Aumreetam Dinabandhu, Jaron Sanchez, Brooks Applewhite, Kathleen Jee, Monika Deshpande, Miguel Flores-Bellver, Ming-Wen Hu, Chuanyu Guo, Shaima Salman, Yousang Hwang, Nicole M. Anders, Michelle A. Rudek, Jiang Qian, M. Valeria Canto-Soler, Gregg L. Semenza, Silvia Montaner, Akrit Sodhi
Jing Zhang, Deepti Sharma, Aumreetam Dinabandhu, Jaron Sanchez, Brooks Applewhite, Kathleen Jee, Monika Deshpande, Miguel Flores-Bellver, Ming-Wen Hu, Chuanyu Guo, Shaima Salman, Yousang Hwang, Nicole M. Anders, Michelle A. Rudek, Jiang Qian, M. Valeria Canto-Soler, Gregg L. Semenza, Silvia Montaner, Akrit Sodhi
View: Text | PDF
Research Article Ophthalmology

Targeting hypoxia-inducible factors with 32-134D safely and effectively treats diabetic eye disease in mice

  • Text
  • PDF
Abstract

Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease.

Authors

Jing Zhang, Deepti Sharma, Aumreetam Dinabandhu, Jaron Sanchez, Brooks Applewhite, Kathleen Jee, Monika Deshpande, Miguel Flores-Bellver, Ming-Wen Hu, Chuanyu Guo, Shaima Salman, Yousang Hwang, Nicole M. Anders, Michelle A. Rudek, Jiang Qian, M. Valeria Canto-Soler, Gregg L. Semenza, Silvia Montaner, Akrit Sodhi

×

Figure 8

HIF inhibitor 32-134D effectively inhibits HIF accumulation and expression of HIF-regulated genes in endothelial cells.

Options: View larger image (or click on image) Download as PowerPoint
HIF inhibitor 32-134D effectively inhibits HIF accumulation and expressi...
(A) Western blot demonstrating inhibition of HIF-1α and HIF-2α accumulation by 32-134D (10 μM) in HUVECs cultured in hypoxia for 4 hours. (B) Clustering analysis of angiogenesis array by qPCR screening for HUVECs cultured in the absence or presence of 32-134D and 1% O2 (hypoxia) or 20% O2 (normoxia) for 16 hours. Expression values were scaled in row direction, and “complete” was the default method in clustering method. (C) Multiple angiogenic genes were upregulated in cells cultured in hypoxia compared with control in angiogenesis array. (D–F) VEGF, ANGPTL4 (D), ANGPT2, PTPRB (E), and SERPINE1 (F) mRNA expression in HUVECs cultured in hypoxia for 16 hours and treated with vehicle or 32-134D (10 μM). Data are represented as mean ± SD. Statistical analyses were performed using 1-way ANOVA test with Bonferroni’s multiple-comparison test. *P < 0.05; **P < 0.01; ****P < 0.0001.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts