Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis
Shaosong Zhang, … , Yibin Wang, Anthony J. Muslin
Shaosong Zhang, … , Yibin Wang, Anthony J. Muslin
Published March 15, 2003
Citation Information: J Clin Invest. 2003;111(6):833-841. https://doi.org/10.1172/JCI16290.
View: Text | PDF
Article Cardiology

The role of the Grb2–p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis

  • Text
  • PDF
Abstract

Cardiac hypertrophy is a common response to pressure overload and is associated with increased mortality. Mechanical stress in the heart can result in the integrin-mediated activation of focal adhesion kinase and the subsequent recruitment of the Grb2 adapter molecule. Grb2, in turn, can activate MAPK cascades via an interaction with the Ras guanine nucleotide exchange factor SOS and with other signaling intermediates. We analyzed the role of the Grb2 adapter protein and p38 MAPK in cardiac hypertrophy. Mice with haploinsufficiency of the Grb2 gene (Grb2+/– mice) appear normal at birth but have defective T cell signaling. In response to pressure overload, cardiac p38 MAPK and JNK activation was inhibited and cardiac hypertrophy and fibrosis was blocked in Grb2+/– mice. Next, transgenic mice with cardiac-specific expression of dominant negative forms of p38α (DN-p38α) and p38β (DN-p38β) MAPK were examined. DN-p38α and DN-p38β mice developed cardiac hypertrophy but were resistant to cardiac fibrosis in response to pressure overload. These results establish that Grb2 action is essential for cardiac hypertrophy and fibrosis in response to pressure overload, and that different signaling pathways downstream of Grb2 regulate fibrosis, fetal gene induction, and cardiomyocyte growth.

Authors

Shaosong Zhang, Carla Weinheimer, Michael Courtois, Attila Kovacs, Cindy E. Zhang, Alec M. Cheng, Yibin Wang, Anthony J. Muslin

×
Options: View larger image (or click on image) Download as PowerPoint
In vivo echocardiographic assessment of DN-p38 mice

In vivo echocardiographic assessment of DN-p38 mice

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts