Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor
Gillian S. Ashcroft, Stuart J. Mills, KeJian Lei, Linda Gibbons, Moon-Jin Jeong, Marisu Taniguchi, Matthew Burow, Michael A. Horan, Sharon M. Wahl, Toshinori Nakayama
Gillian S. Ashcroft, Stuart J. Mills, KeJian Lei, Linda Gibbons, Moon-Jin Jeong, Marisu Taniguchi, Matthew Burow, Michael A. Horan, Sharon M. Wahl, Toshinori Nakayama
View: Text | PDF
Article Aging

Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor

  • Text
  • PDF
Abstract

Characteristic of both chronic wounds and acute wounds that fail to heal are excessive leukocytosis and reduced matrix deposition. Estrogen is a major regulator of wound repair that can reverse age-related impaired wound healing in human and animal models, characterized by a dampened inflammatory response and increased matrix deposited at the wound site. Macrophage migration inhibitory factor (MIF) is a candidate proinflammatory cytokine involved in the hormonal regulation of inflammation. We demonstrate that MIF is upregulated in a distinct spatial and temporal pattern during wound healing and its expression is markedly elevated in wounds of estrogen-deficient mice as compared with intact animals. Wound-healing studies in mice rendered null for the MIF gene have demonstrated that in the absence of MIF, the excessive inflammation and delayed-healing phenotype associated with reduced estrogen is reversed. Moreover, in vitro assays have shown a striking estrogen-mediated decrease in MIF production by activated murine macrophages, a process involving the estrogen receptor. We suggest that estrogen inhibits the local inflammatory response by downregulating MIF, suggesting a specific target for future therapeutic intervention in impaired wound-healing states.

Authors

Gillian S. Ashcroft, Stuart J. Mills, KeJian Lei, Linda Gibbons, Moon-Jin Jeong, Marisu Taniguchi, Matthew Burow, Michael A. Horan, Sharon M. Wahl, Toshinori Nakayama

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Treatment of MIF null wounds with TGF-β (200 ng per wound) results in de...
Treatment of MIF null wounds with TGF-β (200 ng per wound) results in delayed healing as compared with vehicle-treated wounds (a, top panels). Wounds are representative of day 3 after wounding. Arrows demarcate wound edges. Treatment of MIF null wounds with rhMIF results in impaired healing (a, bottom panels) (day 7 after wounding, 1-μg dose) as compared with vehicle (PBS). Scale bar represents 100 μm. Results represent means ± SEM (n = 5, *P < 0.05). (b) Neutralization of MIF in wild-type OVX mice with anti-MIF antibodies leads to improved healing as compared with vehicle alone (day 3 after wounding). Arrows demarcate wound edges, which cannot be visualized in the OVX mice. Graph illustrates wound areas at day 3 after wounding in a dose-response study with increasing doses of anti-MIF antibodies injected at the time of wounding. Scale bar represents 100 μm. Results represent means ± SEM (n = 5, *P < 0.05, **P < 0.01). C, no injection at wound site; PBS, vehicle control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts