Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Local senolysis in aged mice only partially replicates the benefits of systemic senolysis
Joshua N. Farr, Dominik Saul, Madison L. Doolittle, Japneet Kaur, Jennifer L. Rowsey, Stephanie J. Vos, Mitchell N. Froemming, Anthony B. Lagnado, Yi Zhu, Megan Weivoda, Yuji Ikeno, Robert J. Pignolo, Laura J. Niedernhofer, Paul D. Robbins, Diana Jurk, João F. Passos, Nathan K. LeBrasseur, Tamara Tchkonia, James L. Kirkland, David G. Monroe, Sundeep Khosla
Joshua N. Farr, Dominik Saul, Madison L. Doolittle, Japneet Kaur, Jennifer L. Rowsey, Stephanie J. Vos, Mitchell N. Froemming, Anthony B. Lagnado, Yi Zhu, Megan Weivoda, Yuji Ikeno, Robert J. Pignolo, Laura J. Niedernhofer, Paul D. Robbins, Diana Jurk, João F. Passos, Nathan K. LeBrasseur, Tamara Tchkonia, James L. Kirkland, David G. Monroe, Sundeep Khosla
View: Text | PDF
Research Article Aging Bone biology

Local senolysis in aged mice only partially replicates the benefits of systemic senolysis

  • Text
  • PDF
Abstract

Clearance of senescent cells (SnCs) can prevent several age-related pathologies, including bone loss. However, the local versus systemic roles of SnCs in mediating tissue dysfunction remain unclear. Thus, we developed a mouse model (p16-LOX-ATTAC) that allowed for inducible SnC elimination (senolysis) in a cell-specific manner and compared the effects of local versus systemic senolysis during aging using bone as a prototype tissue. Specific removal of Sn osteocytes prevented age-related bone loss at the spine, but not the femur, by improving bone formation without affecting osteoclasts or marrow adipocytes. By contrast, systemic senolysis prevented bone loss at the spine and femur and not only improved bone formation, but also reduced osteoclast and marrow adipocyte numbers. Transplantation of SnCs into the peritoneal cavity of young mice caused bone loss and also induced senescence in distant host osteocytes. Collectively, our findings provide proof-of-concept evidence that local senolysis has health benefits in the context of aging, but, importantly, that local senolysis only partially replicates the benefits of systemic senolysis. Furthermore, we establish that SnCs, through their senescence-associated secretory phenotype (SASP), lead to senescence in distant cells. Therefore, our study indicates that optimizing senolytic drugs may require systemic instead of local SnC targeting to extend healthy aging.

Authors

Joshua N. Farr, Dominik Saul, Madison L. Doolittle, Japneet Kaur, Jennifer L. Rowsey, Stephanie J. Vos, Mitchell N. Froemming, Anthony B. Lagnado, Yi Zhu, Megan Weivoda, Yuji Ikeno, Robert J. Pignolo, Laura J. Niedernhofer, Paul D. Robbins, Diana Jurk, João F. Passos, Nathan K. LeBrasseur, Tamara Tchkonia, James L. Kirkland, David G. Monroe, Sundeep Khosla

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 2,585 467
PDF 315 132
Figure 552 11
Supplemental data 219 37
Citation downloads 81 0
Totals 3,752 647
Total Views 4,399

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts