Several classes of antibiotics have long been known for protective properties that cannot be explained through their direct antimicrobial effects. However, the molecular bases of these beneficial roles have been elusive. In this issue of the JCI, Mottis et al. report that tetracyclines induced disease tolerance against influenza virus infection, expanding their protection potential beyond resistance and disease tolerance against bacterial infections. The authors dissociated tetracycline’s disease-resistance properties from its disease-tolerance properties by identifying potent tetracycline derivatives with minimal antimicrobial activity but increased capacity to induce an adaptive mitochondrial stress response that initiated disease tolerance mechanisms. These findings have potential clinical applications in viral infections.
Kátia Jesus, Luís F. Moita
Usage data is cumulative from November 2024 through November 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 647 | 154 |
| 133 | 29 | |
| Figure | 161 | 2 |
| Citation downloads | 100 | 0 |
| Totals | 1,041 | 185 |
| Total Views | 1,226 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.