Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tau fibrils induce glial inflammation and neuropathology via TLR2 in Alzheimer’s disease–related mouse models
Debashis Dutta, … , Sridevi Dasarathy, Kalipada Pahan
Debashis Dutta, … , Sridevi Dasarathy, Kalipada Pahan
Published August 8, 2023
Citation Information: J Clin Invest. 2023;133(18):e161987. https://doi.org/10.1172/JCI161987.
View: Text | PDF
Research Article Inflammation Neuroscience

Tau fibrils induce glial inflammation and neuropathology via TLR2 in Alzheimer’s disease–related mouse models

  • Text
  • PDF
Abstract

Glial activation and inflammation coincide with neurofibrillary tangle (NFT) formation in neurons. However, the mechanism behind the interaction between tau fibrils and glia is poorly understood. Here, we found that tau preformed fibrils (PFFs) caused induction of inflammation in microglia by specifically activating the TLR2/MyD88, but not the TLR4/MyD88, pathway. Accordingly, the WT TLR2–interacting domain of MyD88 (wtTIDM) peptide inhibited tau PFF–induced activation of the TLR2/MyD88/NF-κB pathway, resulting in reduced inflammation. Nasal administration of wtTIDM in P301S tau–expressing PS19 mice was found to inhibit gliosis and inflammatory markers, as well as to reduce pathogenic tau in the hippocampus, resulting in improved cognitive behavior in PS19 mice. The inhibitory effect of wtTIDM on tau pathology was absent in PS19 mice lacking TLR2, reinforcing the essential involvement of TLR2 in wtTIDM-mediated effects in vivo. Studying the mechanism further, we found that the tau promoter harbored a potential NF-κB–binding site and that proinflammatory molecules increased transcription of tau in neurons via NF-κB. These results suggest that tau-induced neuroinflammation and neuropathology require TLR2 and that neuroinflammation directly upregulates tau in neurons via NF-κB, highlighting a direct connection between inflammation and tauopathy.

Authors

Debashis Dutta, Malabendu Jana, Ramesh Kumar Paidi, Moumita Majumder, Sumita Raha, Sridevi Dasarathy, Kalipada Pahan

×

Figure 5

Hippocampal synaptic plasticity is retained by nasal wtTIDM treatment in PS19 mouse brains.

Options: View larger image (or click on image) Download as PowerPoint
Hippocampal synaptic plasticity is retained by nasal wtTIDM treatment in...
(A) PS19 mice (7 months old) were given intranasal administration of wtTIDM or mTIDM (0.1 mg/kg) for 1.5 months. Hippocampal plasticity was primarily monitored by evaluating the level of PSD95 in pyramidal neurons of CA1 by double immunofluorescence of PSD95 and MAP2. Scale bar: 10 μm. (B) Expression of PSD95 (green) surrounding each DAPI+ nucleus in the pyramidal layer was measured by drawing the region of interest, then using the analyze-measure tool of ImageJ. The MFI data obtained from each section of a particular mouse brain are shown in the bar diagram. (C and D) Similarly, overall protein content of PSD95 in the hippocampus was assessed by Western blot analysis. *P < 0.05 and **P < 0.01 compared with the corresponding groups. Values are presented as mean ± SEM (n = 5 different animals). (E) NMDA-dependent Ca influx in hippocampal slices from experimental animals was measured by treating the slices with NMDA and NASPM (for blocking AMPA-mediated Ca influx). (F) Similarly, AMPA-dependent Ca influx was measured by using AMPA along with N20C (NMDA open-channel blocker). Fluorescence based Ca influx was monitored for 300 repeats in a PerkinElmer VICTOR X2 fluorimeter. The experiment was conducted on samples from 3 different mouse brains of each group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts