Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Microbially derived polyunsaturated fatty acid as a modulator of gastrointestinal motility
Yang Xiao, Purna C. Kashyap
Yang Xiao, Purna C. Kashyap
Published July 15, 2022
Citation Information: J Clin Invest. 2022;132(14):e161572. https://doi.org/10.1172/JCI161572.
View: Text | PDF
Commentary

Microbially derived polyunsaturated fatty acid as a modulator of gastrointestinal motility

  • Text
  • PDF
Abstract

Gastrointestinal (GI) motility requires coordination among several cell types in the intestinal epithelium and the neuromuscular apparatus. A disruption in GI motility was primarily attributed to disruption of this coordinated effort among different host cells, but recent studies have begun to uncover how the products of gut microbiota can alter GI motility by modulating the function of different host cells and the interactions among them. In this issue of the JCI, Chen, Qiu, et al. used a reverse translation approach, isolating a Shigella sp. — peristaltic contraction–inhibiting bacterium (PIB) — from a cohort of patients with intractable constipation. They identified an ω-3 polyunsaturated fatty acid (PUFA), docosapentaenoic acid (DPA), produced by this Shigella variant, as an important driver of constipation using a series of microbiologic, biochemical, and genetic manipulations combined with in vitro and in vivo studies. This finding advances the field, given that production of DPA is rare in the human gut and appears to have a distinct effect on GI physiology.

Authors

Yang Xiao, Purna C. Kashyap

×

Figure 1

Schematic summary of mechanisms underlying microbial modulation of GI physiology.

Options: View larger image (or click on image) Download as PowerPoint
Schematic summary of mechanisms underlying microbial modulation of GI ph...
The conventional, discovery-to-translation approach of studying microbial modulation of GI transit has focused on the effect of known bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites (10–12); cell wall components like LPS; and bacterial functions such as transformation of primary bile acids, on the different cell types (7–9, 15, 16). In contrast, the Chen, Qiu, et al. study used a reverse translation approach, starting with patients diagnosed with IFC and identifying the microbial meditator DPA that prolonged GI transit. Similar to other metabolites, DPA likely alters GI transit by an effect on the enteric nervous system (17). SMCs, smooth muscle cells; 5-HT, serotonin; 5-HTR, serotonin receptor; CFTR, cystic fibrosis transmembrane conductance regulator;

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts