Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Transforming dysfunctional CD8+ T cells into natural controller–like CD8+ T cells: can TCF-1 be the magic wand?
Hiroshi Takata, Lydie Trautmann
Hiroshi Takata, Lydie Trautmann
Published June 1, 2022
Citation Information: J Clin Invest. 2022;132(11):e160474. https://doi.org/10.1172/JCI160474.
View: Text | PDF
Commentary

Transforming dysfunctional CD8+ T cells into natural controller–like CD8+ T cells: can TCF-1 be the magic wand?

  • Text
  • PDF
Abstract

HIV infection results in defective CD8+ T cell functions that are incompletely resolved by antiretroviral therapy (ART) except in natural controllers, who have functional CD8+ T cells associated with viral control. In this issue of the JCI, Perdomo-Celis et al. demonstrated that targeting the Wnt/transcription factor T cell factor 1 (Wnt/TCF-1) pathway in dysfunctional CD8+ T cells led to gains in stemness phenotype, metabolic quiescence, survival potential, response to homeostatic γ-chain cytokines, and antiviral capacities, similar to profiles of functional CD8+ T cells in natural controllers. Although reprogramming might not sufficiently reverse the imprinted dysfunction of CD8+ T cells in HIV infection, these findings outline the Wnt/TCF-1 pathway as a potential target to reprogram dysfunctional CD8+ T cells in efforts to achieve HIV remission.

Authors

Hiroshi Takata, Lydie Trautmann

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 599 52
PDF 84 25
Figure 70 0
Citation downloads 83 0
Totals 836 77
Total Views 913

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts