Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Thyroid functions of mouse cathepsins B, K, and L
Bianca Friedrichs, Carmen Tepel, Thomas Reinheckel, Jan Deussing, Kurt von Figura, Volker Herzog, Christoph Peters, Paul Saftig, Klaudia Brix
Bianca Friedrichs, Carmen Tepel, Thomas Reinheckel, Jan Deussing, Kurt von Figura, Volker Herzog, Christoph Peters, Paul Saftig, Klaudia Brix
View: Text | PDF
Article Aging

Thyroid functions of mouse cathepsins B, K, and L

  • Text
  • PDF
Abstract

Thyroid function depends on processing of the prohormone thyroglobulin by sequential proteolytic events. From in vitro analysis it is known that cysteine proteinases mediate proteolytic processing of thyroglobulin. Here, we have analyzed mice with deficiencies in cathepsins B, K, L, B and K, or K and L in order to investigate which of the cysteine proteinases is most important for proteolytic processing of thyroglobulin in vivo. Immunolabeling demonstrated a rearrangement of the endocytic system and a redistribution of extracellularly located enzymes in thyroids of cathepsin-deficient mice. Cathepsin L was upregulated in thyroids of cathepsin K–/– or B–/–/K–/– mice, suggesting a compensation of cathepsin L for cathepsin K deficiency. Impaired proteolysis resulted in the persistence of thyroglobulin in the thyroids of mice with deficiencies in cathepsin B or L. The typical multilayered appearance of extracellularly stored thyroglobulin was retained in cathepsin K–/– mice only. These results suggest that cathepsins B and L are involved in the solubilization of thyroglobulin from its covalently cross-linked storage form. Cathepsin K–/–/L–/– mice had significantly reduced levels of free thyroxine, indicating that utilization of luminal thyroglobulin for thyroxine liberation is mediated by a combinatory action of cathepsins K and L.

Authors

Bianca Friedrichs, Carmen Tepel, Thomas Reinheckel, Jan Deussing, Kurt von Figura, Volker Herzog, Christoph Peters, Paul Saftig, Klaudia Brix

×

Figure 7

Options: View larger image (or click on image) Download as PowerPoint
Tg persistence in thyroids of mice with deficiencies in cathepsin B or L...
Tg persistence in thyroids of mice with deficiencies in cathepsin B or L. Lysates of thyroids from mice of the indicated genotypes were normalized to equal amounts of protein, separated on 10% SDS gels, and transferred to nitrocellulose for subsequent incubation of the blots with antibodies against Tg. (a) A representative immunoblot. (b) The uppermost portion of another immunoblot demonstrates the expression of dimeric (thick line) and monomeric Tg (thin line) in WT and all cathepsin-deficient thyroids, as well as the appearance of a high–molecular weight Tg fragment (broken line), which was observed in the lysates of cathepsin K–/–/L–/– thyroids only. Molecular mass markers are indicated in the left margin. (c) Densitometric profiles of the indicated bands representing intact Tg and several of its degradation fragments. (d) Three different immunoblots with two lanes per genotype were evaluated densitometrically. Mean values ± SD of the densities of the lanes are given. Note that the amounts of immunolabeled Tg were upregulated about five- to sixfold in thyroids of cathepsin B– or L–deficient mice, whereas cathepsin K–/– thyroids contained only about twofold the amounts of Tg present in WTs (d).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts