Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNAs as therapeutic targets in cardiovascular disease
Bernhard Laggerbauer, Stefan Engelhardt
Bernhard Laggerbauer, Stefan Engelhardt
Published June 1, 2022
Citation Information: J Clin Invest. 2022;132(11):e159179. https://doi.org/10.1172/JCI159179.
View: Text | PDF
Review Cardiology

MicroRNAs as therapeutic targets in cardiovascular disease

  • Text
  • PDF
Abstract

The discovery of microRNAs and their role in diseases was a breakthrough that inspired research into microRNAs as drug targets. Cardiovascular diseases are an area in which limitations of conventional pharmacotherapy are highly apparent and where microRNA-based drugs have appreciably progressed into preclinical and clinical testing. In this Review, we summarize the current state of microRNAs as therapeutic targets in the cardiovascular system. We report recent advances in the identification and characterization of microRNAs, their manipulation and clinical translation, and discuss challenges and perspectives toward clinical application.

Authors

Bernhard Laggerbauer, Stefan Engelhardt

×

Figure 3

Molecular vehicles for microRNA modulators and their functionalization.

Options: View larger image (or click on image) Download as PowerPoint
Molecular vehicles for microRNA modulators and their functionalization.
...
Improved nuclease resistance by the use of modified nucleotides in synthetic oligonucleotides allows for application as “naked” molecules (112). Their embedding in liposomes or lipid nanoparticles (LNPs) or polymer-based nanoparticles (PNPs) can improve cell entry via endocytosis (113). Metal particles such as gold have been used as carriers for oligonucleotides (113) and plasmids (126). Exosomes with microRNA cargo can be isolated from native sources or engineered for optimized microRNA loading or cell specificity (104, 105). Oligonucleotides or their carriers can be further functionalized by conjugation to improve their circulation time (e.g., by PEGylation), membrane penetrance (e.g., cholesterol, cell-penetrating peptides), or to enhance their cell- or tissue-specific delivery (e.g., by coupling to receptor ligands, antibody fragments, or aptamers). TRA, transferrin receptor aptamer. Viral vectors and their organotropic serotypes, particularly adeno-associated virus (AAV), can be utilized for the expression or genetic inactivation (e.g., using CRISPR/Cas systems) of microRNAs or their targets. Improved transduction and/or tropism can be achieved by engineering AAVs (122, 123), and the use of cell-type-specific promoters adds further improvement. Exemplary promoters are denoted for gene expression in cardiac myocytes (Tnnt2, cardiac troponin T2; Myh6, myosin heavy chain 6; Myl2, myosin light chain 2; Nppa, natriuretic peptide A), in endothelial cells (protein tyrosine kinase Tie2/Tek; Kdr/Flk-1, kinase insert domain receptor/fetal liver kinase 1), and in vascular smooth muscle cells (Myh11, myosin heavy chain 11). For a critical review on endothelial cell–specific promoters, see Chakraborty et al. (158).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts