Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Biological aging processes underlying cognitive decline and neurodegenerative disease
Mitzi M. Gonzales, … , Ellen Kraig, Miranda E. Orr
Mitzi M. Gonzales, … , Ellen Kraig, Miranda E. Orr
Published May 16, 2022
Citation Information: J Clin Invest. 2022;132(10):e158453. https://doi.org/10.1172/JCI158453.
View: Text | PDF
Review Series

Biological aging processes underlying cognitive decline and neurodegenerative disease

  • Text
  • PDF
Abstract

Alzheimer’s disease and related dementias (ADRD) are among the top contributors to disability and mortality in later life. As with many chronic conditions, aging is the single most influential factor in the development of ADRD. Even among older adults who remain free of dementia throughout their lives, cognitive decline and neurodegenerative changes are appreciable with advancing age, suggesting shared pathophysiological mechanisms. In this Review, we provide an overview of changes in cognition, brain morphology, and neuropathological protein accumulation across the lifespan in humans, with complementary and mechanistic evidence from animal models. Next, we highlight selected aging processes that are differentially regulated in neurodegenerative disease, including aberrant autophagy, mitochondrial dysfunction, cellular senescence, epigenetic changes, cerebrovascular dysfunction, inflammation, and lipid dysregulation. We summarize research across clinical and translational studies to link biological aging processes to underlying ADRD pathogenesis. Targeting fundamental processes underlying biological aging may represent a yet relatively unexplored avenue to attenuate both age-related cognitive decline and ADRD. Collaboration across the fields of geroscience and neuroscience, coupled with the development of new translational animal models that more closely align with human disease processes, is necessary to advance novel therapeutic discovery in this realm.

Authors

Mitzi M. Gonzales, Valentina R. Garbarino, Erin Pollet, Juan P. Palavicini, Dean L. Kellogg Jr., Ellen Kraig, Miranda E. Orr

×

Figure 1

Interactions of biological aging processes with CNS changes.

Options: View larger image (or click on image) Download as PowerPoint
Interactions of biological aging processes with CNS changes.
The hallmar...
The hallmarks of aging, such as epigenetic modifications, cellular senescence, metabolic dysfunction, and aberrant autophagy, as well as other phenotypes of brain aging, including inflammation, vascular dysfunction and loss of blood brain barrier integrity, and lipid dysregulation, interact to contribute to age-related processes in the CNS, including cognitive decline, neuropathological protein accumulation, and brain morphology changes. These same factors are further dysregulated in neurodegenerative disease. Further investigations are necessary to determine the specific factors and sequences that force the transition between normative age-related changes and manifest neurodegenerative disease in some individuals while others remain cognitively resilient.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts