Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

YAP: The nexus between metabolism and cardiac remodeling
Chen Gao, Yibin Wang
Chen Gao, Yibin Wang
Published March 15, 2022
Citation Information: J Clin Invest. 2022;132(6):e157664. https://doi.org/10.1172/JCI157664.
View: Text | PDF
Commentary

YAP: The nexus between metabolism and cardiac remodeling

  • Text
  • PDF
Abstract

Cardiomyocyte hypertrophy is an integral part of cardiac remodeling that occurs under physiological or pathological stresses. It can lead to heart failure in a pathological form or oppose functional deterioration in a compensatory one. The mechanisms underlying an adaptive outcome of hypertrophy are ill defined. In this issue of the JCI, Kashihara et al. explored the role of the Yes-associated protein 1 (YAP) transcription factor in the heart, using cell culturing and mouse models. YAP activity was found to be associated with changes in genes of the glycolytic and auxiliary pathways under stress. Notably, YAP upregulated glucose transporter 1 (GLUT1), and inhibition of GLUT1 blocked YAP-induced hypertrophy but worsened heart function. These findings suggest that YAP is a regulator of metabolic reprogramming in the heart during compensatory hypertrophy. This insight may help in the development of future therapies for heart failure.

Authors

Chen Gao, Yibin Wang

×

Usage data is cumulative from March 2022 through August 2022.

Usage JCI PMC
Text version 3,089 102
PDF 885 37
Figure 391 2
Citation downloads 52 0
Totals 4,417 141
Total Views 4,558

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts