Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Impaired renal Na+ retention in the sgk1-knockout mouse
Peer Wulff, … , Florian Lang, Dietmar Kuhl
Peer Wulff, … , Florian Lang, Dietmar Kuhl
Published November 1, 2002
Citation Information: J Clin Invest. 2002;110(9):1263-1268. https://doi.org/10.1172/JCI15696.
View: Text | PDF
Article Nephrology

Impaired renal Na+ retention in the sgk1-knockout mouse

  • Text
  • PDF
Abstract

Research Article

Authors

Peer Wulff, Volker Vallon, Dan Yang Huang, Harald Völkl, Fang Yu, Kerstin Richter, Martina Jansen, Michaela Schlünz, Karin Klingel, Johannes Loffing, Gunther Kauselmann, Michael R. Bösl, Florian Lang, Dietmar Kuhl

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Single-nephron GFR and proximal-tubular Na+ reabsorption are altered in ...
Single-nephron GFR and proximal-tubular Na+ reabsorption are altered in sgk1–/– mice on a low-NaCl diet. (a) Schematic diagram of free-flow collection of tubular fluid from the last loop of the proximal tubule (PT) and the first loop of the distal tubule (DT) on the kidney surface in micropuncture experiments in anesthetized mice at day 3 after initiating a low-NaCl diet (0.15 g Na+/kg). (b) Fractional delivery of fluid and Na+ to proximal tubule and distal tubule as well as urine (n = 13–23 nephrons in 5–6 mice). *P < 0.05 versus sgk1+/+ mice. (c) Correlation of Na+ reabsorption in proximal tubule with single-nephron filtration rate. Note that nephron filtration rate is reduced in sgk1–/– mice and that for any given nephron filtration rate the Na+ reabsorption is higher in sgk1–/– mice than in sgk1+/+ mice, indicating a primary increase in proximal reabsorption in sgk1–/– mice. Symbols are as given in Figure 2 legend.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts