Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition
Yihsuan S. Tsai, … , Benjamin G. Vincent, Chad V. Pecot
Yihsuan S. Tsai, … , Benjamin G. Vincent, Chad V. Pecot
Published January 6, 2022
Citation Information: J Clin Invest. 2022;132(4):e155523. https://doi.org/10.1172/JCI155523.
View: Text | PDF
Clinical Research and Public Health Genetics Oncology

Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition

  • Text
  • PDF
Abstract

BACKGROUND The KRAS proto-oncogene is among the most frequently mutated genes in cancer, yet for 40 years it remained an elusive therapeutic target. Recently, allosteric inhibitors that covalently bind to KRAS G12C mutations have been approved for use in lung adenocarcinomas. Although responses are observed, they are often short-lived, thus making in-depth characterization of the mechanisms of resistance of paramount importance.METHODS Here, we present a rapid-autopsy case of a patient who had a KRASG12C-mutant lung adenocarcinoma who initially responded to a KRAS G12C inhibitor but then rapidly developed resistance. Using deep-RNA and whole-exome sequencing comparing pretreatment, posttreatment, and matched normal tissues, we uncover numerous mechanisms of resistance to direct KRAS inhibition.RESULTS In addition to decreased KRAS G12C–mutant allele frequency in refractory tumors, we also found reactivation of the MAPK pathway despite no new mutations in KRAS or its downstream mediators. Tumor cell–intrinsic and non–cell autonomous mechanisms included increased complement activation, coagulation, and tumor angiogenesis, and several lines of evidence of immunologic evasion.CONCLUSION Together, our findings reveal numerous mechanisms of resistance to current KRAS G12C inhibitors through enrichment of clonal populations, KRAS-independent downstream signaling, and diverse remodeling of the tumor microenvironment.FUNDING Richard and Fran Duley, Jimmy and Kay Mann, the NIH, and the North Carolina Biotechnology Center.

Authors

Yihsuan S. Tsai, Mark G. Woodcock, Salma H. Azam, Leigh B. Thorne, Krishna L. Kanchi, Joel S. Parker, Benjamin G. Vincent, Chad V. Pecot

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 1,507 303
PDF 194 73
Figure 361 8
Supplemental data 602 181
Citation downloads 87 0
Totals 2,751 565
Total Views 3,316

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts