Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Deciphering regulatory protein activity in human pancreatic islets via reverse engineering of single-cell sequencing data
Yumi Imai
Yumi Imai
Published December 15, 2021
Citation Information: J Clin Invest. 2021;131(24):e154482. https://doi.org/10.1172/JCI154482.
View: Text | PDF
Commentary

Deciphering regulatory protein activity in human pancreatic islets via reverse engineering of single-cell sequencing data

  • Text
  • PDF
Abstract

The loss of functional β cell mass contributes to development and progression of type 2 diabetes (T2D). However, the molecular mechanisms differentiating islet dysfunction in T2D from nondiabetic states remain elusive. In this issue of the JCI, Son et al. applied reverse engineering to obtain the activity of gene expression regulatory proteins from single-cell RNA sequencing data of nondiabetic and T2D human islets. The authors identify unique patterns of regulatory protein activities associated with T2D. Furthermore, BACH2 emerged as a potential transcription factor that drives activation of T2D-associated regulatory proteins in human islets.

Authors

Yumi Imai

×

Usage data is cumulative from September 2022 through September 2023.

Usage JCI PMC
Text version 454 31
PDF 64 18
Figure 72 0
Citation downloads 29 0
Totals 619 49
Total Views 668

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts