Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Tumor-intrinsic PRC2 inactivation drives a context-dependent immune-desert microenvironment and is sensitized by immunogenic viruses
Juan Yan, Yuedan Chen, Amish J. Patel, Sarah Warda, Cindy J. Lee, Briana G. Nixon, Elissa W.P. Wong, Miguel A. Miranda-Román, Ning Yang, Yi Wang, Mohini R. Pachai, Jessica Sher, Emily Giff, Fanying Tang, Ekta Khurana, Sam Singer, Yang Liu, Phillip M. Galbo Jr., Jesper L.V. Maag, Richard P. Koche, Deyou Zheng, Cristina R. Antonescu, Liang Deng, Ming O. Li, Yu Chen, Ping Chi
Juan Yan, Yuedan Chen, Amish J. Patel, Sarah Warda, Cindy J. Lee, Briana G. Nixon, Elissa W.P. Wong, Miguel A. Miranda-Román, Ning Yang, Yi Wang, Mohini R. Pachai, Jessica Sher, Emily Giff, Fanying Tang, Ekta Khurana, Sam Singer, Yang Liu, Phillip M. Galbo Jr., Jesper L.V. Maag, Richard P. Koche, Deyou Zheng, Cristina R. Antonescu, Liang Deng, Ming O. Li, Yu Chen, Ping Chi
View: Text | PDF
Research Article Oncology

Tumor-intrinsic PRC2 inactivation drives a context-dependent immune-desert microenvironment and is sensitized by immunogenic viruses

  • Text
  • PDF
Abstract

Immune checkpoint blockade (ICB) has demonstrated clinical success in “inflamed” tumors with substantial T cell infiltrates, but tumors with an immune-desert tumor microenvironment (TME) fail to benefit. The tumor cell–intrinsic molecular mechanisms of the immune-desert phenotype remain poorly understood. Here, we demonstrated that inactivation of the polycomb-repressive complex 2 (PRC2) core components embryonic ectoderm development (EED) or suppressor of zeste 12 homolog (SUZ12), a prevalent genetic event in malignant peripheral nerve sheath tumors (MPNSTs) and sporadically in other cancers, drove a context-dependent immune-desert TME. PRC2 inactivation reprogramed the chromatin landscape that led to a cell-autonomous shift from primed baseline signaling-dependent cellular responses (e.g., IFN-γ signaling) to PRC2-regulated developmental and cellular differentiation transcriptional programs. Further, PRC2 inactivation led to diminished tumor immune infiltrates through reduced chemokine production and impaired antigen presentation and T cell priming, resulting in primary resistance to ICB. Intratumoral delivery of inactivated modified vaccinia virus Ankara (MVA) enhanced tumor immune infiltrates and sensitized PRC2-loss tumors to ICB. Our results identify molecular mechanisms of PRC2 inactivation–mediated, context-dependent epigenetic reprogramming that underline the immune-desert phenotype in cancer. Our studies also point to intratumoral delivery of immunogenic viruses as an initial therapeutic strategy to modulate the immune-desert TME and capitalize on the clinical benefit of ICB.

Authors

Juan Yan, Yuedan Chen, Amish J. Patel, Sarah Warda, Cindy J. Lee, Briana G. Nixon, Elissa W.P. Wong, Miguel A. Miranda-Román, Ning Yang, Yi Wang, Mohini R. Pachai, Jessica Sher, Emily Giff, Fanying Tang, Ekta Khurana, Sam Singer, Yang Liu, Phillip M. Galbo Jr., Jesper L.V. Maag, Richard P. Koche, Deyou Zheng, Cristina R. Antonescu, Liang Deng, Ming O. Li, Yu Chen, Ping Chi

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 913 222
PDF 141 39
Figure 522 2
Supplemental data 342 18
Citation downloads 96 0
Totals 2,014 281
Total Views 2,295

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts