Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system
Yan Chun Li, … , Shu Q. Liu, Li-Ping Cao
Yan Chun Li, … , Shu Q. Liu, Li-Ping Cao
Published July 15, 2002
Citation Information: J Clin Invest. 2002;110(2):229-238. https://doi.org/10.1172/JCI15219.
View: Text | PDF
Article

1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system

  • Text
  • PDF
Abstract

Research Article

Authors

Yan Chun Li, Juan Kong, Minjie Wei, Zhou-Feng Chen, Shu Q. Liu, Li-Ping Cao

×

Figure 8

Options: View larger image (or click on image) Download as PowerPoint
1,25(OH)2D3 suppresses renin gene transcription. (a) Expression of hVDR ...
1,25(OH)2D3 suppresses renin gene transcription. (a) Expression of hVDR mRNA in stable As4.1 clones. P, parental As4.1 cells; #57, As4.1 clone 57 stably transfected with pcDNA-hVDR; V, As4.1 clone stably transfected with the empty vector pcDNA3.1. (b) Renin mRNA expression in As4.1 clone V (Vector) and #57 treated with ethanol (E) or different doses of 1,25(OH)2D3 as indicated. (c) As4.1-hVDR cells (clone #57) were transfected with pGL3-control, pGL-4.1kb, or pGL-117bp luciferase reporter plasmid and then treated with ethanol (black bars) or 10–8 M 1,25(OH)2D3 (white bars). Luciferase activity was determined 48 hours after transfection. Similar results were obtained in other stable clones (data not shown).

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts