Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system
Yan Chun Li, … , Shu Q. Liu, Li-Ping Cao
Yan Chun Li, … , Shu Q. Liu, Li-Ping Cao
Published July 15, 2002
Citation Information: J Clin Invest. 2002;110(2):229-238. https://doi.org/10.1172/JCI15219.
View: Text | PDF
Article

1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system

  • Text
  • PDF
Abstract

Research Article

Authors

Yan Chun Li, Juan Kong, Minjie Wei, Zhou-Feng Chen, Shu Q. Liu, Li-Ping Cao

×

Figure 3

Options: View larger image (or click on image) Download as PowerPoint
Effect of high sodium load and volume depletion on renin mRNA expression...
Effect of high sodium load and volume depletion on renin mRNA expression and plasma Ang II production in wild-type and VDR–/– mice. (a) Northern blot analysis of renal renin mRNA from mice treated, for different numbers of days as indicated, with the normal rodent diet supplemented with 8% NaCl. Each lane represents an individual mouse. Control mice were untreated. (b) Plasma Ang II concentrations in the 8% NaCl diet–treated animals. White bars, wild-type mice; black bars, VDR–/– mice. *P < 0.01 vs. corresponding wild-type mice at the same time point; **P < 0.05 vs. untreated control wild-type mice; n = 3 in each genotype at each time point. (c) Northern blot analysis of renal renin mRNA expression in mice dehydrated for 24 hours (24 h). Each lane represents an individual mouse. Control mice were untreated. (d) Plasma Ang II levels in untreated control and dehydrated (24 h) mice. White bars, wild-type mice; black bars, VDR–/– mice. *P < 0.01 vs. corresponding wild-type mice; **P < 0.01 vs. untreated control wild-type mice; n = 3 in each genotype in each group.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts