Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IL-33 acts as a costimulatory signal to generate alloreactive Th1 cells in graft-versus-host disease
Gaelen K. Dwyer, Lisa R. Mathews, José A. Villegas, Anna Lucas, Anne Gonzalez de Peredo, Bruce R. Blazar, Jean-Philippe Girard, Amanda C. Poholek, Sanjiv A. Luther, Warren Shlomchik, Hēth R. Turnquist
Gaelen K. Dwyer, Lisa R. Mathews, José A. Villegas, Anna Lucas, Anne Gonzalez de Peredo, Bruce R. Blazar, Jean-Philippe Girard, Amanda C. Poholek, Sanjiv A. Luther, Warren Shlomchik, Hēth R. Turnquist
View: Text | PDF
Research Article Immunology

IL-33 acts as a costimulatory signal to generate alloreactive Th1 cells in graft-versus-host disease

  • Text
  • PDF
Abstract

Antigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular patterns (DAMPs) that generate proinflammatory APCs that secrete IL-12, which is a driver of donor Th1 responses, causing graft-versus-host disease (GVHD). Nevertheless, other mechanisms exist to initiate alloreactive T cell responses, as recipients with disrupted DAMP signaling or lacking IL-12 develop GVHD. We established that tissue damage signals are perceived directly by donor CD4+ T cells and promoted T cell expansion and differentiation. Specifically, the fibroblastic reticular cell–derived DAMP IL-33 is increased by recipient conditioning and is critical for the initial activation, proliferation, and differentiation of alloreactive Th1 cells. IL-33 stimulation of CD4+ T cells was not required for lymphopenia-induced expansion, however. IL-33 promoted IL-12–independent expression of Tbet and generation of Th1 cells that infiltrated GVHD target tissues. Mechanistically, IL-33 augmented CD4+ T cell TCR-associated signaling pathways in response to alloantigen. This enhanced T cell expansion and Th1 polarization, but inhibited the expression of regulatory molecules such as IL-10 and Foxp3. These data establish an unappreciated role for IL-33 as a costimulatory signal for donor Th1 generation after alloHCT.

Authors

Gaelen K. Dwyer, Lisa R. Mathews, José A. Villegas, Anna Lucas, Anne Gonzalez de Peredo, Bruce R. Blazar, Jean-Philippe Girard, Amanda C. Poholek, Sanjiv A. Luther, Warren Shlomchik, Hēth R. Turnquist

×

Figure 3

alloHCT conditioning increases recipient IL-33 expression in the spleen and is necessary for donor T cell expansion independently of IL-12.

Options: View larger image (or click on image) Download as PowerPoint
alloHCT conditioning increases recipient IL-33 expression in the spleen ...
(A–E) On d–1, CD90.1+il33–/– or CD90.1+il33+/+ B6 recipient mice received lethal TBI (11 Gy), and some cohorts received anti–IL-12p40 or IgG as control (as described in Figure 1). On d0, mice received 1 × 107 H2-Kd+CD90.2+ BALB/c TCD-BM with 2 × 106 H2-Kd+CD90.2+ BALB/c CD3+T cells. Donor H2-Kd+ splenocytes were assessed at d1, d3, and d7 by immunofluorescence microscopy and at d7 by flow cytometry. (A) Model schematic as it relates to imaging (B–D) and antibody (IgG or anti–IL-12p40) treatments (E). (B) Representative spleen image from each cohort on d3. (C) Frequency of IL-33+ cells in the recipient and naive spleens; 1 complete scanned cross section was analyzed per mouse. (D) Frequency of H2-Kd+ donor T cells in recipient spleens at d3, analyzed from 1 complete scanned cross section per mouse. (E) Donor CD90.2+CD4+ cell counts from the spleen on d7. Data in B–F are represented as mean ± SD. n = 3–4/group. *P < 0.05; ***P < 0.001; ****P < 0.0001, 1-way ANOVA (B and E); Student’s t test (D).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts