Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Myeloperoxidase produces nitrating oxidants in vivo
Joseph P. Gaut, … , Abderrazzaq Belaaouaj, Jay W. Heinecke
Joseph P. Gaut, … , Abderrazzaq Belaaouaj, Jay W. Heinecke
Published May 15, 2002
Citation Information: J Clin Invest. 2002;109(10):1311-1319. https://doi.org/10.1172/JCI15021.
View: Text | PDF
Article

Myeloperoxidase produces nitrating oxidants in vivo

  • Text
  • PDF
Abstract

Despite intense interest in pathways that generate reactive nitrogen species, the physiologically relevant mechanisms for inflammatory tissue injury remain poorly understood. One possible mediator is myeloperoxidase, a major constituent of neutrophils, monocytes, and some populations of macrophages. The enzyme uses hydrogen peroxide and nitrite to generate 3-nitrotyrosine in vitro. To determine whether myeloperoxidase produces nitrating intermediates in vivo, we used isotope dilution gas chromatography/mass spectrometry to quantify 3-nitrotyrosine in two models of peritoneal inflammation: mice infected with Klebsiella pneumoniae and mice subjected to cecal ligation and puncture. Both models developed an intense neutrophil inflammatory response, and the inflammatory fluid contained markedly elevated levels of 3-chlorotyrosine, a marker of myeloperoxidase action. In striking contrast, 3-nitrotyrosine levels rose only in the mice infected with K. pneumoniae. Levels of total nitrite and nitrate were 20-fold higher in mice injected with K. pneumoniae than in mice subjected to cecal ligation and puncture. Levels of 3-nitrotyrosine failed to increase in mice infected with K. pneumoniae that lacked functional myeloperoxidase. Our observations provide strong evidence that myeloperoxidase generates reactive nitrogen species in vivo and that it operates in this fashion only when nitrite and nitrate become available.

Authors

Joseph P. Gaut, Jaeman Byun, Hung D. Tran, Wendy M. Lauber, James A. Carroll, Richard S. Hotchkiss, Abderrazzaq Belaaouaj, Jay W. Heinecke

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Analysis of N-acetyl-L-tyrosine exposed to the myeloperoxidase-NO2–-Cl–-...
Analysis of N-acetyl-L-tyrosine exposed to the myeloperoxidase-NO2–-Cl–-H2O2 system. (a) HPLC analysis. Inset: Absorbance spectra of authentic N-acetyl-L-3-nitrotyrosine (N-Ac-nitrotyrosine [N-Ac-NO2-Y]) and peak III. (b) Electrospray ionization tandem mass spectrometric analysis of peak III. (c) Aromatic region of a proton nuclear magnetic resonance spectrum of peak III. MPO, myeloperoxidase.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts