Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Evidence for in vivo transport of bioactive nitric oxide in human plasma
Tienush Rassaf, … , Martin Feelisch, Malte Kelm
Tienush Rassaf, … , Martin Feelisch, Malte Kelm
Published May 1, 2002
Citation Information: J Clin Invest. 2002;109(9):1241-1248. https://doi.org/10.1172/JCI14995.
View: Text | PDF
Article Vascular biology

Evidence for in vivo transport of bioactive nitric oxide in human plasma

  • Text
  • PDF
Abstract

Although hitherto considered as a strictly locally acting vasodilator, results from recent clinical studies with inhaled nitric oxide (NO) indicate that NO can exert effects beyond the pulmonary circulation. We therefore sought to investigate potential remote vascular effects of intra-arterially applied aqueous NO solution and to identify the mechanisms involved. On bolus application of NO into the brachial artery of 32 healthy volunteers, both diameter of the downstream radial artery and forearm blood flow increased in a dose-dependent manner. Maximum dilator responses were comparable to those after stimulation of endogenous NO formation with acetylcholine and bradykinin. Response kinetics and pattern of NO decomposition suggested that despite the presence of hemoglobin-containing erythrocytes, a significant portion of NO was transported in its unbound form. Infusion of NO (36 μmol/min) into the brachial artery increased levels of plasma nitroso species, nitrite, and nitrate in the draining antecubital vein (by < 2-fold, 30-fold, and 4-fold, respectively), indicative of oxidative and nitrosative chemistry. Infused N-oxides were inactive as vasodilators whereas S-nitrosoglutathione dilated conduit and resistance arteries. Our results suggest that NO can be transported in bioactive form for significant distances along the vascular bed. Both free NO and plasma nitroso species contribute to the dilation of the downstream vasculature.

Authors

Tienush Rassaf, Michael Preik, Petra Kleinbongard, Thomas Lauer, Christian Heiß, Bodo-Eckehard Strauer, Martin Feelisch, Malte Kelm

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Dose-response curve for changes in FBF following application of increasi...
Dose-response curve for changes in FBF following application of increasing doses of NO applied into the brachial artery (n = 15). *Significant differences from base line. C, control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts