Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Basal epithelial stem cells cross an alarmin checkpoint for postviral lung disease
Kangyun Wu, Kenji Kamimoto, Yong Zhang, Kuangying Yang, Shamus P. Keeler, Benjamin J. Gerovac, Eugene V. Agapov, Stephen P. Austin, Jennifer Yantis, Kelly A. Gissy, Derek E. Byers, Jennifer Alexander-Brett, Christy M. Hoffmann, Matthew Wallace, Michael E. Hughes, Erika C. Crouch, Samantha A. Morris, Michael J. Holtzman
Kangyun Wu, Kenji Kamimoto, Yong Zhang, Kuangying Yang, Shamus P. Keeler, Benjamin J. Gerovac, Eugene V. Agapov, Stephen P. Austin, Jennifer Yantis, Kelly A. Gissy, Derek E. Byers, Jennifer Alexander-Brett, Christy M. Hoffmann, Matthew Wallace, Michael E. Hughes, Erika C. Crouch, Samantha A. Morris, Michael J. Holtzman
View: Text | PDF
Research Article Pulmonology

Basal epithelial stem cells cross an alarmin checkpoint for postviral lung disease

  • Text
  • PDF
Abstract

Epithelial cells are charged with protection at barrier sites, but whether this normally beneficial response might sometimes become dysfunctional still needs definition. Here, we recognized a pattern of imbalance marked by basal epithelial cell growth and differentiation that replaced normal airspaces in a mouse model of progressive postviral lung disease due to the Sendai virus. Single-cell and lineage-tracing technologies identified a distinct subset of basal epithelial stem cells (basal ESCs) that extended into gas-exchange tissue to form long-term bronchiolar-alveolar remodeling regions. Moreover, this cell subset was selectively expanded by crossing a cell-growth and survival checkpoint linked to the nuclear-localized alarmin IL-33 that was independent of IL-33 receptor signaling and instead connected to autocrine chromatin accessibility. This mechanism creates an activated stem-progenitor cell lineage with potential for physiological or pathological function. Thus, conditional loss of Il33 gene function in basal epithelial cells disrupted the homeostasis of the epithelial barrier at skin and gut sites but also markedly attenuated postviral disease in the lung based on the downregulation of remodeling and inflammation. Thus, we define a basal ESC strategy to deploy innate immune machinery that appears to overshoot the primordial goal of self-defense. Our findings reveal new targets to stratify and correct chronic and often deadly postviral disease.

Authors

Kangyun Wu, Kenji Kamimoto, Yong Zhang, Kuangying Yang, Shamus P. Keeler, Benjamin J. Gerovac, Eugene V. Agapov, Stephen P. Austin, Jennifer Yantis, Kelly A. Gissy, Derek E. Byers, Jennifer Alexander-Brett, Christy M. Hoffmann, Matthew Wallace, Michael E. Hughes, Erika C. Crouch, Samantha A. Morris, Michael J. Holtzman

×

Figure 9

IL-33–dependent basal ESC expansion in PVLD.

Options: View larger image (or click on image) Download as PowerPoint
IL-33–dependent basal ESC expansion in PVLD.
(A) Proliferation levels de...
(A) Proliferation levels determined by flow cytometry of lung epithelial cells based on Ki-67 expression for WT versus Il33–/– and Il1rl1–/– mice 12 days after SeV versus SeV-UV infection. (B) Corresponding cell numbers from flow cytometry of lung epithelial cells based on Aqp3 and EpCAM expression 12 and 21 days under the conditions in A. (C) Corresponding day-21 lung spheroid formation for FACS-purified cell populations under the conditions in A. (D) Immunostaining for Aqp3 and the IL-33–cherry reporter (cherry) in lung sections under the conditions in A. Scale bar: 200 μm. (E) Immunostaining for Krt5 in lung sections 49 days after SeV or SeV-UV infection under the conditions in A. Scale bar: 1 mm. (F) Quantitation of Krt5 and Sftpc staining under the conditions in E. Data represent results from a single experiment with 3–8 mice per condition, and experiments were replicated twice. *P < 0.05, by ANOVA with Bonferroni correction.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts