Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Epilepsy channelopathies go neddy: stabilizing NaV1.1 channels by neddylation
Stephen C. Cannon
Stephen C. Cannon
Published April 15, 2021
Citation Information: J Clin Invest. 2021;131(8):e148370. https://doi.org/10.1172/JCI148370.
View: Text | PDF
Commentary

Epilepsy channelopathies go neddy: stabilizing NaV1.1 channels by neddylation

  • Text
  • PDF
Abstract

Loss-of-function mutations of SCN1A encoding the pore-forming α subunit of the NaV1.1 neuronal sodium channel cause a severe developmental epileptic encephalopathy, Dravet syndrome (DS). In this issue of the JCI, Chen, Luo, Gao, et al. describe a phenocopy for DS in mice deficient for posttranslational conjugation with neural precursor cell expressed, developmentally downregulated 8 (NEDD8) (neddylation), selectively engineered in inhibitory interneurons. Pursuing the possibility that this phenotype is also caused by loss of NaV1.1, Chen, Luo, Gao, and colleagues show that interneuron excitability and GABA release are impaired, NaV1.1 degradation rate is increased with a commensurate decrease of NaV1.1 protein, and NaV1.1 is a substrate for neddylation. These findings establish neddylation as a mechanism for stabilizing NaV1.1 subunits and suggest another pathomechanism for epileptic sodium channelopathy.

Authors

Stephen C. Cannon

×

Full Text PDF

Download PDF (279.65 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts