Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI1457

Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain.

S N Liossis, X Z Ding, G J Dennis, and G C Tsokos

Department of Clinical Physiology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.

Find articles by Liossis, S. in: PubMed | Google Scholar

Department of Clinical Physiology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.

Find articles by Ding, X. in: PubMed | Google Scholar

Department of Clinical Physiology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.

Find articles by Dennis, G. in: PubMed | Google Scholar

Department of Clinical Physiology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.

Find articles by Tsokos, G. in: PubMed | Google Scholar

Published April 1, 1998 - More info

Published in Volume 101, Issue 7 on April 1, 1998
J Clin Invest. 1998;101(7):1448–1457. https://doi.org/10.1172/JCI1457.
© 1998 The American Society for Clinical Investigation
Published April 1, 1998 - Version history
View PDF
Abstract

Cellular immunity aberrations in patients with SLE are underscored by the abnormal early Ag receptor-mediated lymphocyte signal transduction pathway. To further characterize the T cell receptor (TCR)/CD3-initiated signaling defects, we studied 22 patients with SLE, 12 patients with other systemic rheumatic diseases, and 14 normal donors. The early (1 min) TCR/CD3-mediated tyrosine phosphorylation of cellular proteins with a molecular size between 36 and 64 kD was increased in 15 of 21 SLE patients, compared to normal or disease control subjects. The deficiency or absence of a band with a molecular size of approximately 16 kD in the immunoblots of SLE patients led us to investigate the expression of the TCRzeta chain. In immunoblots using anti-zeta antibodies we found that 10 of 22 lupus patients tested lacked the expression of TCRzeta, which was always present in control subjects (P < 0.001). Flow cytometric studies using permeabilized cells confirmed the deficiency or absence of the TCRzeta chain in lupus T cells. Using Northern blots we found that for eight patients tested, the TCRzeta mRNA was missing in three, decreased in three, and apparently normal in two patients (P < 0.003), but was always present in control subjects. Reverse transcriptase-PCR verified Northern blot results. We conclude that TCRzeta chain expression is either decreased or absent in the majority of patients with SLE, but not in patients with other systemic rheumatic diseases, regardless of disease activity, treatment status, or clinical manifestations. The previously described increases in TCR-initiated Ca2+ responses and the herein described increases in TCR-induced protein tyrosine phosphorylation and deficient TCRzeta expression may represent intrinsic defects modulating lupus T cell function.

Version history
  • Version 1 (April 1, 1998): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts