Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Visualizing the dynamics of tuberculosis pathology using molecular imaging
Alvaro A. Ordonez, Elizabeth W. Tucker, Carolyn J. Anderson, Claire L. Carter, Shashank Ganatra, Deepak Kaushal, Igor Kramnik, Philana L. Lin, Cressida A. Madigan, Susana Mendez, Jianghong Rao, Rada M. Savic, David M. Tobin, Gerhard Walzl, Robert J. Wilkinson, Karen A. Lacourciere, Laura E. Via, Sanjay K. Jain
Alvaro A. Ordonez, Elizabeth W. Tucker, Carolyn J. Anderson, Claire L. Carter, Shashank Ganatra, Deepak Kaushal, Igor Kramnik, Philana L. Lin, Cressida A. Madigan, Susana Mendez, Jianghong Rao, Rada M. Savic, David M. Tobin, Gerhard Walzl, Robert J. Wilkinson, Karen A. Lacourciere, Laura E. Via, Sanjay K. Jain
View: Text | PDF
Review

Visualizing the dynamics of tuberculosis pathology using molecular imaging

  • Text
  • PDF
Abstract

Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.

Authors

Alvaro A. Ordonez, Elizabeth W. Tucker, Carolyn J. Anderson, Claire L. Carter, Shashank Ganatra, Deepak Kaushal, Igor Kramnik, Philana L. Lin, Cressida A. Madigan, Susana Mendez, Jianghong Rao, Rada M. Savic, David M. Tobin, Gerhard Walzl, Robert J. Wilkinson, Karen A. Lacourciere, Laura E. Via, Sanjay K. Jain

×

Figure 3

Commonly used TB model systems and their characteristics and utilization in TB imaging research.

Options: View larger image (or click on image) Download as PowerPoint
Commonly used TB model systems and their characteristics and utilization...
In vitro granulomas, zebrafish, mice, rabbits, and nonhuman primates are the most common model systems used to recapitulate and study TB. Optical imaging in the zebrafish has been used to study the dynamics of granuloma formation. Mouse and rabbit models have been used to validate multiple imaging tools (PET/SPECT), some of which have been translated into the clinic. 18F-FDG PET has also been used extensively in nonhuman primate models. AAlthough nonhuman primates develop TB meningitis, the characterization of this model has not been reported.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts