Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Aqueous proteins help predict the response of patients with neovascular age-related macular degeneration to anti-VEGF therapy
Xuan Cao, … , Silvia Montaner, Akrit Sodhi
Xuan Cao, … , Silvia Montaner, Akrit Sodhi
Published December 7, 2021
Citation Information: J Clin Invest. 2022;132(2):e144469. https://doi.org/10.1172/JCI144469.
View: Text | PDF
Clinical Research and Public Health Ophthalmology

Aqueous proteins help predict the response of patients with neovascular age-related macular degeneration to anti-VEGF therapy

  • Text
  • PDF
Abstract

Background To reduce the treatment burden for patients with neovascular age-related macular degeneration (nvAMD), emerging therapies targeting vascular endothelial growth factor (VEGF) are being designed to extend the interval between treatments, thereby minimizing the number of intraocular injections. However, which patients will benefit from longer-acting agents is not clear.Methods Eyes with nvAMD (n = 122) underwent 3 consecutive monthly injections with currently available anti-VEGF therapies, followed by a treat-and-extend protocol. Patients who remained quiescent 12 weeks from their prior treatment entered a treatment pause and were switched to pro re nata (PRN) treatment (based on vision, clinical exam, and/or imaging studies). Proteomic analysis was performed on aqueous fluid to identify proteins that correlate with patients’ response to treatment.Results At the end of 1 year, 38 of 122 eyes (31%) entered a treatment pause (≥30 weeks). Conversely, 21 of 122 eyes (17%) failed extension and required monthly treatment at the end of year 1. Proteomic analysis of aqueous fluid identified proteins that correlated with patients’ response to treatment, including proteins previously implicated in AMD pathogenesis. Interestingly, apolipoprotein-B100 (ApoB100), a principal component of drusen implicated in the progression of nonneovascular AMD, was increased in treated patients who required less frequent injections. ApoB100 expression was higher in AMD eyes compared with controls but was lower in eyes that develop choroidal neovascularization (CNV), consistent with a protective role. Accordingly, mice overexpressing ApoB100 were partially protected from laser-induced CNV.Funding This work was supported by the National Eye Institute, National Institutes of Health grants R01EY029750, R01EY025705, and R01 EY27961; the Research to Prevent Blindness, Inc.; the Alcon Research Institute; and Johns Hopkins University through the Robert Bond Welch and Branna and Irving Sisenwein professorships in ophthalmology.Conclusion Aqueous biomarkers could help identify patients with nvAMD who may not require or benefit from long-term treatment with anti-VEGF therapy.

Authors

Xuan Cao, Jaron Castillo Sanchez, Aumreetam Dinabandhu, Chuanyu Guo, Tapan P. Patel, Zhiyong Yang, Ming-Wen Hu, Lijun Chen, Yuefan Wang, Danyal Malik, Kathleen Jee, Yassine J. Daoud, James T. Handa, Hui Zhang, Jiang Qian, Silvia Montaner, Akrit Sodhi

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 1,370 151
PDF 167 62
Figure 609 4
Table 407 0
Supplemental data 163 27
Citation downloads 98 0
Totals 2,814 244
Total Views 3,058

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts