Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Battle for supremacy: nucleic acid interactions between viruses and cells
Elizabeth J. Hennessy, Garret A. FitzGerald
Elizabeth J. Hennessy, Garret A. FitzGerald
Published December 8, 2020
Citation Information: J Clin Invest. 2021;131(3):e144227. https://doi.org/10.1172/JCI144227.
View: Text | PDF
Review

Battle for supremacy: nucleic acid interactions between viruses and cells

  • Text
  • PDF
Abstract

Since the COVID-19 pandemic swept across the globe, researchers have been trying to understand its origin, life cycle, and pathogenesis. There is a striking variability in the phenotypic response to infection with SARS-CoV-2 that may reflect differences in host genetics and/or immune response. It is known that the human epigenome is influenced by ethnicity, age, lifestyle, and environmental factors, including previous viral infections. This Review examines the influence of viruses on the host epigenome. We describe general lessons and methodologies that can be used to understand how the virus evades the host immune response. We consider how variation in the epigenome may contribute to heterogeneity in the response to SARS-CoV-2 and may identify a precision medicine approach to treatment.

Authors

Elizabeth J. Hennessy, Garret A. FitzGerald

×

Figure 1

Points of interaction between viral RNA and host RNA factors.

Options: View larger image (or click on image) Download as PowerPoint
Points of interaction between viral RNA and host RNA factors.
When a hos...
When a host cell is infected with a (+)ssRNA virus, both the genomic RNA and subgenomic RNAs produced during RNA replication can interact with endogenous host factors such as miRNAs in the cytoplasm, p-bodies, nuclear factors like PRC2, and tRNAs involved in translation of viral proteins.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts